Chứng tỏ rằng A là số chính phương biết A=1+3+5+7+9+11+....+(2n-1)
Chứng minh rằng : A=1+3+5+7+...+(2n-1) là 1 số chính phương.
Chứng minh rằng: A=1+3+5+7+...+(2n-1) là 1 số chính phương
a) chứng minh rằng số có dạng n6 - n4 + 2n3 + 2n2 trong đó n > 1 và là số tự nhiên không phải là số chính phương.
b) giả sử N = 1.3.5.7...2009.2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N, 2N + 1 không số nào là số chính phương.
quan sát 11-2=9=32;1111-22=1089=332 hãy chứng minh rằng A =111...111(2n chữ số 1)-2222...222(n chữ số 2) là số chính phương
bài 1: tìm số tự nhiên n biết rằng:
a.1+2+3+...+n=378
b. chứng minh:A=4+2^2+2^3+...+2^2015 là 1 số chính phương
c. tìm A thuộc N biết ƯCLN (a,b)=10 ; BCNN (a,b)=120
d. Tìm n thuộc Z sao cho n-7 chia hết cho 2n+3
Bạn ơi, cái câu b đấy
Minh tính đc A=22016-1.
22016=(21008)2 là chính phương. Tuiy nhiên ko tồn tại 2 số chính phương liên tiếp là 2 số tự nhiên liên tiếp. Bạn xem lại đề bài nha
Chứng minh rằng A = 1 + 3 + 5 + 7 ......... + n là số chính phương ( n lẻ )
Chứng minh rằng : A=1+3+5+7+...+n là số chính phương với n lẻ
Bạn ghi thế khó hiểu quá mk sửa lại nhé.
\(A=1+3+5+7+...+\left(2n-1\right)\)
\(\Rightarrow\) Số số hạng của A là:
\(\frac{\left(2n-1\right)-1}{2}+1=n\) ( số hạng )
\(\Rightarrow1+3+5+7+...+\left(2n-1\right)=\frac{\left(2n-1+1\right).n}{2}=n^2\) là một số chính phương .
Vậy \(A=1+3+5+7+...+\left(2n-1\right)\) với mọi n thuộc N* luôn là số chính phương.
Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a+b+c+8 là số chính phương .
bài này mình làm trong vở ,mình đã chụp ảnh lại lời giải,bạn chịu khó mở trang của mình ra xem nha
Bạn tham khảo bài toán số 21 nha : https://olm.vn/hoi-dap/detail/11112433588.html
~ Học tốt ~
#)Giải :
Ta có :
\(a=111...11\)(2n chữ số 1)
\(b=111..11\)(n + 1 chữ số 1)
\(c=666...66\)(n chữ số 6)
\(\Rightarrow a+b+c+8=111...11+111...11+666...66+8\)
\(=\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+\frac{6\left(10^n-1\right)}{9}+\frac{72}{9}\)
\(=\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)
\(=\frac{\left(10^n\right)^2+10.10^n+6.10^n-6+70}{9}\)
\(=\frac{\left(10^n\right)^2+16.10^n+64}{9}=\left(\frac{10^n+8}{3}\right)^2\)
\(\Rightarrow a+b+c+8\)là số chính phương (đpcm)
Cho A= n+8\2n+5 (n thuộc N*)
a)Chứng tỏ rằng phân số A luôn tồn tại
b) Tìm phân số A biết n=-3; 2n-6=2;n^2 -1 =0
c)cTìm các giá trị của n để A là số nguyên tố.