Tìm số tự nhiên n để n^5+1 chia hết cho n^3+1
1, n.(n+1) . (n+2) . (n+3) chia hết cho 3 và 8
2,
a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?
b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp
3,
Tìm số nguyên x, biết:
a) 2x - 1 là bội số của x - 3
b) 2x + 1 là ước của 3x + 2
c) (x - 4).(x + 2) + 6 không là bội của 9
d) 9 không là ước của (x - 2).(x + 5) + 11
4,
Tìm số nguyên a, b, sao cho:
a) (2a - 1).(b2 + 1) = -17
b) (3 - a).(5 - b) = 2
c) ab = 18, a + b = 11
5,
Tìm số nguyên x, sao cho:
a) A = x2 + 2021 đạt giá trị nhỏ nhất
b) B = 2022 - 20x20 - 22x22 đạt giá trị lớn nhất.
1) Tìm số tự nhiên n sao cho 2n+5 chia hết cho 2n -1
2) Tìm số tự nhiên n sao cho 3.n+5 chia hết cho 3.n-1
3) Tìm số tự nhiên n sao cho n+5 chia hết cho n-1
Giải tóm tắt dễ hiểu nha mọi người. Cảm ơn !
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
câu 1: Tìm số tự nhiên n để n2 + 3 chia hết cho n+ 2
câu 2: Tìm số tự nhiên n để (3n+14) chia hết cho n+1
Câu 1: Tìm số tự nhiên x sao cho \(\frac{5}{x+1}\) là số tự nhiên
Câu 2: Tìm số tự nhiên n để
a) 3 chia hết n + 2
b) n+1 chia hết cho 2 và n 2 chia hết n +1
c) 2n chia hết n - 1
Câu 1 :
\(\frac{5}{x+1}\)\(=1\)
\(5:\left(x+1\right)=1\)
\(x+1=5:1\)
\(x+1=5\)
\(\Rightarrow x=4\)
a,Tìm các số tự nhiên x,y sao cho (2x +1)(y-5)=12
b/Tìm số tự nhiên n sao cho n + 5 chia hết cho n +1
c/Tìm số tự nhiên n sao cho 2n + 13 chia hết cho 2n +3
d/Tìm số tuwnhieen n sao cho 4n + 5 chia hết cho 2n +1
Tìm số tự nhiên n để 1^n+2^n+3^n+4^n chia hết cho 5
đặt a=1 n + 2 n + 3 n + 4 n
Nếu n=0 ⇒A=4( loại )
Nếu n=1 ⇒A=10( thỏa )
Nếu n>2 .
TH1 : n chẵn ⇒n=2k(k∈N)
⇒A=1+22k+32k+42k
=1+4k+9k+16k
Với k lẻ => k=2m+1
⇒A=1+42m+1+92m+1+162m+1
=1+16m.4+81m.9+256m.16
Dễ CM : A⋮̸5 vì A chia 5 dư 1 .
TH2: n lẻ => n=2h+1
⇒A=1+16h.4+81h.9+256h.16
TT như trên ; ta cũng CM được A không chia hết cho 5
Vậy n=1 thỏa mãn
1) Tìm số tự nhiên n khác 1 để 3n +5 chia hết cho n.
2) Tìm số tự nhiên nhỏ nhất x khác 0 biết rằng (x+5) chia hết cho 5 ; (x-12) chia hết cho 6 và (14+x) chia hết cho 7
3) Số nguyên tố đôi một là gì?
Tìm số tự nhiên n để:
a) n + 5 chia hết cho n - 2
b) n2 + 3 chia hết cho n + 1
a)Ta có:\(n+5⋮n-2\)
\(\Leftrightarrow n-2+7⋮n-2\)
\(\Leftrightarrow7⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(7\right)\)
Mà \(n\in N\Rightarrow n-2\ge-2\)
\(\Leftrightarrow n-2\in\left\{-1,1,7\right\}\)
\(\Leftrightarrow n\in\left\{1,3,9\right\}\)
b)\(n^2+3⋮n+1\)
\(\Leftrightarrow n^2+n-n+3⋮n+1\)
\(\Leftrightarrow n\left(n+1\right)-n-1+4⋮n+1\)
\(\Leftrightarrow n\left(n+1\right)-\left(n+1\right)+4⋮n+1\)
\(\Leftrightarrow4⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(4\right)\)
Mà \(n\in N\Rightarrow n+1\ge1\)
\(\Leftrightarrow n+1\in\left\{1,2,4\right\}\)
\(\Leftrightarrow n\in\left\{0,1,3\right\}\)
Tìm số tự nhiên n để n5+1 chia hết cho n3+1
Lời giải:
$n^5+1\vdots n^3+1$
$\Rightarrow n^2(n^3+1)-(n^2-1)\vdots n^3+1$
$\Rightarrow n^2-1\vdots n^3+1$
$\Rightarrow (n-1)(n+1)\vdots (n+1)(n^2-n+1)$
$\Rightarrow n-1\vdots n^2-n+1$
Nếu $n=0$ hoặc $n=1$ thì hoàn toàn thỏa mãn.
Nếu $n>1$ thì $n-1>0$.
$\Rightarrow n-1\geq n^2-n+1$
$\Rightarrow n^2-2n+2\leq 0$
$\Leftrightarrow (n-1)^2< -1$ (vô lý - loại)
Vậy $n=0$ hoặc $n=1$