Cho đa thức: P(x)=x^2018 - 100.x^2017 + 100.x^2016 - ... + 100.x + 2016
Tính P(99)
bài 1: tính
(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x ( 100 – 25 x 2 x 2)
Bài làm:
(2019-2018+2017-.....-2) x (100 -25x2x2)
=(2019-2018+2017-.....-2) x (100 -25x4)
=(2019-2018+2017-.....-2) x 0
=0
*like phát
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x(100-25x4)
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x(100-100)
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x0
=0
tìm x thuộc Z
a)1+2+3+.........+x=5050
b)1/2+1/6+........1x2+x=99/100
c)1/6+1/12+.......1/x2-x=59/100
d)x-2017+x-2016+.........+99+100=0
g)x-1+x-2+x-3+.......x-2017=0
ta có
1+2+3+.........+x=5050
=>\(\frac{x.\left(x+1\right)}{2}=5050\)
=>x.(x+1)=5050.2
=>x.(x+1)=10100
=>x.(x+1)=100.101
=>x=100
tìm x ∈ Z
a)1+2+3+.....+x=5050
b)1/2+1/6+.......+1/x2+x=99/100
c)1/6+1/12+........+1/x2-x=59/100
d)x-2017+x-2016+.......+99+100=0
e)x-1+x-2+x-3+.........+x-2017=0
a; 1 + 2 + 3 + ... + \(x\) = 5050
Số số hạng của dãy số trên là: (\(x-1\)):1 + 1 = \(x\)
(\(x\) + 1)\(\times\) \(x\): 2 = 5050
(\(x\) + 1) \(\times\) \(x\) = 5050 \(\times\) 2
(\(x+1\)) \(\times\) \(x\) = 10100
(\(x+1\)) \(\times\) \(x\) = 101 \(\times\) 100
Vậy \(x=100\)
b; \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{x^2+x}\) = \(\dfrac{99}{100}\)
\(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{x.\left(x+1\right)}\) = \(\dfrac{99}{100}\)
\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{x}\) - \(\dfrac{1}{x+1}\) = 1 - \(\dfrac{1}{100}\)
1 - \(\dfrac{1}{x+1}\) = 1 - \(\dfrac{1}{100}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{100}\)
\(x+1\) = 100
\(x=100-1\)
\(x=99\)
Vậy \(x=99\)
Tìm N(2017) biết đa thức N(x)=\(x^{2017}-2018.x^{2016}+2018.x^{2015}-2018.x^{2014}+........-2018.x^2+2018.x-1\)
Ta có: \(N\left(x\right)=x^{2017}-2018x^{2016}+2018x^{2015}-...-2018x^2+2018x-1\)
\(=x^{2017}-2018\left(x^{2016}-x^{2015}+...+x^2-x\right)-1\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018\left(2017^{2016}-2017^{2015}+...+2017^2-2017\right)-1\)
Đặt \(A=2017^{2016}-2017^{2015}+...+2017^2-2017\)
\(\Rightarrow2017A=2017^{2017}-2017^{2016}+...+2017^3-2017^2\)
\(\Rightarrow2018A=2017^{2017}-2017\)
\(\Rightarrow A=\dfrac{2017^{2017}-2017}{2018}\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018.\dfrac{2017^{2017}-2017}{2018}-1\)
\(=2017^{2017}-\left(2017^{2017}-2017\right)-1\)
\(=2017^{2017}-2017^{2017}+2017-1\)
\(=2016\)
Vậy N(2017) = 2016
1.cho x thuộc Z, chứng minh rằng x^200+x^100+1 chia het cho x^4+x^2+1
2.tìm các số tự nhiênx,y,z thỏa mãn phương trình:2016^x+2017^y=2018^z
1. Cho biểu thức B :
\(B=x^{2017}-2018.x^{2016}+2018.x^{2015}-2018.x^{2014}+...-2018.x^2+2018.x-1\)
TÍNH GIÁ TRỊ BIỂU THỨC VỚI x=2017
Tính : x100+101x99+101x98+...+101x+2016 tại x=-100
cho A(x) = \(2015x^{100}+2015x^{99}+2015x^{98}+...+2015x+2016\)
khi x=2016.tính A(x)
Cho x,y là số thục biết x^2016 +y^2016= x^2017 + y^2017= x^2018 +y^2018. Tính x^2019 + y^2019