Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran mun
Xem chi tiết
Đúng là chỉ có người bạn...
18 tháng 3 2016 lúc 19:52

không như nhau đâu, có 2 số 0;5 sao mà như nhau được ,(55=3125 ;105=100000)

zZz Phan Cả Phát zZz
18 tháng 3 2016 lúc 19:53

ta co 

n^5 = n^4 x n 

=) dpcm

Quyết Bùi Thị
18 tháng 3 2016 lúc 21:26

Ta có \(n^5-n=n.\left(n^2-1\right)\left(n^2+1\right)\)

                       \(=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)

Với n\(\in\)N* thì \(\left(n-1\right)n\)là tích của hai số tự nhiên liên tiếp nên \(\left(n-1\right)n\) chia hết cho 2           (1)

Mặt khác \(n^5-n=\)\(\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)

                              \(=\left(n-1\right)n\left(n+1\right)\left(n^2-4+5\right)\)

                               \(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)

Do đó \(n^5-n\) chia hết cho 5           (2)

Từ (1) và (2) suy ra \(n^5-n\)chia hết cho 10(do ƯCLN (2;5)=1)

\(\Rightarrow\)Chữ số tận cùng của các số tự nhiên n và n5 là như nhau(vì cùng số dư khi chia cho 10)

\(\Rightarrow\)đpcm

Hoàng Thu Huyền
Xem chi tiết
Nguyễn Anh Quân
12 tháng 1 2018 lúc 22:18

a, Xét : 6n-n = 5n 

Vì n chẵn nên 5n có tận cùng là 0

=> n và 6n có chữ số tận cùng giống nhau

c, Xét : n^5-n = n.(n^4-1) = n.(n^2-1).(n^2+1) = (n-1).n.(n+1).(n^2-4+5) = (n-2).(n-1).n.(n+1).(n+2) + 5.(n-1).n.(n+1)

Ta thấy : n-2;n-1;n;n+1;n+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )

Lại có : (n-1).n.(n+1) chia hết cho 2 nên 5.(n-1).n.(n+1) chia hết cho 10

=> n^5-n chia hết cho 10

=> n^5-n có tận cùng là 0

=> n^5 và n có chữ số tận cùng như nhau

Tk mk nha

Hoàng Thu Huyền
12 tháng 1 2018 lúc 22:22

mình cần phần b bn làm đc ko

Bùi Thị Ngọc Ánh
Xem chi tiết
kaitovskudo
6 tháng 1 2016 lúc 9:01

Ta có: n có tận cùng là CS chẵn

=>n chia hết cho 2

=>5n chia hết cho 10

=>5n có CSTC là CS 0

=>5n+n có CSTN là n

=>6n và n có cùng 1 CSTC (đpcm)

Châu Lê Thị Huỳnh Như
Xem chi tiết
Nguyễn Anh Duy
16 tháng 8 2016 lúc 20:35

a) Cách 1. Xét từng trường hợp n tận cùng bằng 0, 2, 4, 6, 8 thì 6n tận cùng cũng như vậy.

     Cách 2. Xét hiệu 6n−n=5n chia hết cho 10 vì n chẵn.b) Nếu n tận cùng bằng 1 hoặc 9 thì n2 tận cùng bằng 1, do đó n4 tận cùng bằng 1.     Nếu n tận cùng bằng 3 hoặc 7 thì n2 tận cùng bằng 9, do đó n4 tận cùng bằng 1.     Nếu n tận cùng bằng 4 hoặc 6 thì n2 tận cùng bằng 6, do đó n4 tận cùng bằng 6.     Nếu n tận cùng bằng 2 hoặc 8 thì n2 tận cùng bằng 4, d
Trần Minh Hoàng
29 tháng 9 2017 lúc 10:42

a) n là số chẵn

\(\Rightarrow\) n = 2k

\(\Rightarrow\) 6n = 12k

Vì 12 có tận cùng như 2 nên 12k có tận cùng như 2k.

\(\Rightarrow\) n và 6n có tận cùng như nhau

\(\Rightarrow\) ĐPCM

Nguyễn Thị Lan Trinh
Xem chi tiết
dao an hoang long
Xem chi tiết
Thân Thị Khánh Vân
Xem chi tiết
Đỗ Thị Duyên
Xem chi tiết
Phạm Nhật Anh
Xem chi tiết
Thanh Hiền
27 tháng 11 2015 lúc 20:33

 A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1) 
* n(n +1) chia hết cho 2 => A chia hết cho 2. 

*cm: A chia hết cho 5. 
n chia hết cho 5 => A chia hết cho 5. 
n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4) 
- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5 
- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5 
- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5 
- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5 
=> A luôn chia hết cho 5 
2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0 
=> đpcm

Nguyễn Xuân Sáng
27 tháng 11 2015 lúc 20:35

Nói trước mình copy
n^5-n=n(n^4-1)=n(n²-1)(n²-4+5) 
=(n-2)(n-1)n(n+1)(n+2)+5(n-1)n(n+1) (a) 
*Vì (n-2)(n-1)n(n+1)(n+2) là tíc 5 số tự nhiên ltiếp nên chia hết cho 2,5 nên chia hết cho 10 
( vì (2,5)=1) (b) 
*Vì (n-1)n(n+1) là tích 3 số nguyên ltiếp nên chia hết cho 2 =>5(n-1)n(n+1) chia hết cho 10 (c) 
Từ (a),(b),(c)=>n^5-n chia hết cho 10 nên n^5 và n có cùng dư khi chia cho 10 
Đặt dư là r(r thuộc N,0≤r≤9) ta có:n^5=10k+r,n=10h+r đều có tận cùng là r (đpcm) 

Vương Thị Diễm Quỳnh
27 tháng 11 2015 lúc 20:37

A = n^5 ‐ n = n﴾n^4‐1﴿ = n﴾n^2 +1﴿﴾n^2 ‐1﴿ =n﴾n^2 +1﴿﴾n+1﴿﴾n‐1﴿

* n﴾n +1﴿ chia hết cho 2 => A chia hết cho 2.

*cm: A chia hết cho 5. n chia hết cho 5 => A chia hết cho 5.

n không chia hết cho 5 => n = 5k + r ﴾với r =1,2,3,4﴿

‐ r = 1 => n ‐ 1 = 5k chia hết cho 5 => A chia hết cho 5

‐ r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5

‐ r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5

‐ r = 4 => n +1 = 5k + 5 chia hết cho 5

=> A chia hết cho 5

=> A luôn chia hết cho 5

2,5 nguyên tố cùng nhau

=> A chia hết cho 2.5=10

=> A tận cùng là 0

mà A=n^5-n

nên n^5 và n phải có chữ số tận cùng giống nhau

=>dpcm

Anh Dao Tuan
Xem chi tiết
Akai Haruma
12 tháng 10 lúc 21:24

Lời giải:

$A=n(n-1)(n+1)(n^2+1)=n(n^2-1)(n^2+1)$

Vì $n^2$ là scp nên $n^2$ có tận cùng là $0,1,4,5,6,9$

Nếu $n^2$ tận cùng là $0$ thì $n$ tận cùng là $0$

$\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 10\vdots 5$

Nếu $n^2$ tận cùng là $5$ thì $n$ tận cùng là $5$

$\Rightarrow n\vdots 5\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 5$

Nếu $n^2$ tận cùng là $1$ hoặc $6$ thì $n^2-1$ tận cùng là $0$ hoặc $5$

$\Rightarrow n^2-1\vdots 5\Rightarrow A\vdots 5$

Nếu $n^2$ tận cùng là $4$ hoặc $9$ thì $n^2+1$ tận cùng là $5$ hoặc $0$

$\Rightarrow n^2+1\vdots 5\Rightarrow A\vdots 5$

Vậy tóm lại $A\vdots 5$

----------------

Lại có:

$A=n(n^2-1)(n^2+1)=n(n^4-1)$

Nếu $n$ chẵn thì $A=n(n^4-1)\vdots 2$

Nếu $n$ lẻ thì $n^4-1$ chẵn $\Rightarrow A=n(n^4-1)\vdots 2$
Vậy tóm lại $A\vdots 2$

Vậy $A\vdots 2; A\vdots 5\Rightarrow A\vdots 10$

b.

$A=n(n^4-1)=n^5-n\vdots 10$

$\Rightarrow n^5, n$ có cùng chữ số tận cùng.