Giải phương trình nghiệm nguyên
\(a,4^x+5^x=9^x\)
b,\(2^x+2^y+2^z=512\)
Nhờ các bạn giải giùm mình 5 bài luôn nhé! Mình đang cần gấp lắm! Mình cảm ơn.
1. Cho x,y,z khác 0 và (x+y+ z)^2 = x^2+y^2+z^2.
C/m 1/x^3 + 1/y^3 + 1/z^3= 3/x*y*z.
2. Giải phương trình:
x^3 + 3ax^2 + 3(a^2 -bc)x +a^3+b^3 +c^3
(Ẩn x)
3. Tìm nghiệm nguyên của phương trình:
(x+y)^3=(x-2)^3 + (y+2)^3 + 6
4. Tìm nghiệm nguyên dương thỏa mãn cả hai phương trình
x^3 + y^3 + 3xyz= z^3
z^3=(2x+2y)^3
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
giải phương trình nghiệm nguyên
a)xyz=4(x+y+z)
b)(x2+y)+(y2+x)=(x-y)3
1. tìm nghiệm nguyên của phương trình:
p(x + y) = xy và p nguyên tố
2. tìm nghiệm nguyên của phương trình:
a. x + y + z + 9 = xyz
b. x + y + 1 = xyz
a) Tìm nghiệm nguyên của phương trình: \(2y^2-x+2xy=y+4\)
b) Giải phương trình : ( \(1+x\sqrt{x^2+1}\))(\(\sqrt{x^2+1}-x\)) = 1
\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)
\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)
\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)
\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)
\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)
\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)
Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ
\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)
VD1: Tìm nghiệm nguyên không âm:
\(3^x+4^x=5^x\)
VD2: Tìm nghiệm nguyên không âm:
\(2^x+2^y+2^z=512\)
VD3: Tìm nghiệm nguyên của phương trình:
\(\sqrt{x+\sqrt{x}}=y\)
\(VD3,\sqrt{x+\sqrt{x}}=y\left(x\ge0\right)\)
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\x+\sqrt{x}=y^2\end{cases}}\)
Dễ thấy x phải là số chính phương
Đặt \(x=a^2\left(a\in N\right)\)
\(\Rightarrow a^2+a=y^2\)
\(\Leftrightarrow a\left(a+1\right)=y^2\)
Vì VP là số chính phương nên \(a\left(a+1\right)\)là số chính phương
Mà a và a + 1 là 2 số tự nhiên liên tiếp và a < a + 1
Nên a = 0 (tích 2 số nguyên liên tiếp là 1 scp thì phải có 1 số bằng 0 mà a < a + 1 nên a = 0)
Khi đó x = 0 ; y = 0
Vậy pt có nghiệm nguyên (x;y)=(0;0)
VD1
<=> \(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)
+ \(x=0;1\)không thỏa mãn
+ \(x=2\)=> \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\)đúng
+ \(x>2\)
=> \(\left(\frac{3}{5}\right)^x< \left(\frac{3}{5}\right)^2,\left(\frac{4}{5}\right)^x< \left(\frac{4}{5}\right)^2\)
=> \(VT< 1\)(loại)
Vậy x=2
VD2
Giả sử \(x\ge y\ge z\)do vai trò của x,y,z như nhau
=> \(2^x\ge2^y\ge2^z\)
=> \(512\le3.2^x\)
=> \(x\ge8\)
Mà \(x< 9\)do \(2^x< 512\)
=> \(x=8\)
Khi đó \(2^y+2^z=256\)
Tưởng tự \(2.2^y\ge256\)=> \(y\ge7\)
Mà \(y< 8\)do \(2^y< 256\)
=> y=7
=> z=7
Vậy \(\left(x,y,z\right)=\left(8,7,7\right)\)và các hoán vị
Giải phương trình nghiệm nguyên:
1. \(x+y+z+t=xyzt\)
2. \(x+y+z+9=xyz\)
3. \(x^2-y^3=7\)
4. \(x^3+y^3-6xy+8=0\)
5. \(x^2+y^2+z^2=xy+3y+2z-4\)
1) Vì vai trò của x;y;z;t như nhau nên giả sử x≤y≤z≤tx≤y≤z≤t
Suy ra x+y+z+t≤4tx+y+z+t≤4t
↔xyzt≤4t↔xyz≤4↔xyzt≤4t↔xyz≤4
Do x;y;z;t nguyên dương nên 0<xyz≤4→xyz=1;2;3;40<xyz≤4→xyz=1;2;3;4
Xét 4 trường hợp sau:
• TH1TH1 : xyz=1xyz=1
→x=y=z=1→x=y=z=1
Thay vào (1) có : 3+t=t3+t=t (vô lí)
TH1TH1 không xảy ra: loại
• TH2:xyz=2TH2:xyz=2
Do x≤y≤z→x=y=1;z=2x≤y≤z→x=y=1;z=2
Thay vào (1) có : 4+t=2t→t=44+t=2t→t=4 (thỏa mãn)
(x;y;z;t) = (1;1;2;4)
• TH3:xyz=3TH3:xyz=3
→x=y=1;z=3→x=y=1;z=3
Thay vào (1) có : 5+t=3t→2t=55+t=3t→2t=5 (vô lí vì 5 k chia hết cho 2)
TH3TH3 k xảy ra : loại
• TH4TH4 : xyz = 4
+) x = 1; y = z = 2
→5+t=4t→5=3t→→5+t=4t→5=3t→ t không là số nguyên
+) x=y=1;z=4x=y=1;z=4
Thay vào (1) tìm được t = 2 (không thỏa mãn do z≤tz≤t(gt) mà z = 4 > 2 = t)
TH4TH4 không xảy ra: loại
Vậy (x;y;z;t) = (1;1;2;4) và các hoán vị
2)xyz = 9 + x + y + z
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz
giả sử: x ≥ y ≥ z ≥ 1, ta có:
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2
=> z^2 ≤ 12 => z = 1, 2 , 3
*z = 1:
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y
=> y ≤ 3 => y = 1,2,3
y =1 => x= 11 + x (vô nghiệm)
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1)
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên)
* z = 2
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y
=> y ≤ 5/2 => y = 2
=> 4x = 13 + x (không có nghiệm x nguyên)
* z =3:
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y
=> y ≤ 14/3 => y = 3, 4
y = 3 => 9x = 15 + x (không có nghiệm x nguyên)
y = 4 => 12x = 16 + x (không có nghiệm x nguyên)
Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.
5)
Chuyen sang ve trai cac hang tu chua x,y,z:
(x^2 - xy + y^2/4) + 3(y^2/4 - 2.y/2 + 1) + (z^2-2z+1) -3-1 <= -4
<=> (x-y/2)^2 + 3.(y/2 -1)^2 + (z-1)^2 <= 0
Binh phuong cua 1 so thi ko the am nen suy ra fai xay ra dong thoi:
x-y/2 =0 ; y/2 -1 =0 vaf z-1 =0
giai ra duoc x= 1; y=2; z=1 thoa man
GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN
a) 4.(x+y+z)=xyz
b) 2x2y-5xy+7x-3y=3x2+5
HELP ME
giải phương trình nghiệm nguyên sau
\(15x^2-7y^2=9\)
\(x^4+y^4+z^4+t^4=165\)
giúp mình với, mình cảm ơn (mình cần trước thứ 6)