Giải phương trình:
m2x +1 > m(x+1) với m là tham số
Cho phương trình: m2x + m(x - 3) = 6(x - 1) (m là tham số) (1)
a. Giải phương trình (1) khi m = 1
b. Tìm m để phương trình (1) có một nghiệm duy nhất thỏa mãn biểu thức A=x^2+2x+3/x^2+2 đạt giá trị nhỏ nhất?
a: Khi m=1 thì pt sẽ là: x+x-3=6x-6
=>6x-6=2x-3
=>4x=3
=>x=3/4
b: m^2x+m(x-3)=6(x-1)
=>x(m^2+m-6)=-6+3m=3m-6
=>x(m+3)(m-2)=3(m-2)
Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0
=>m<>-3 và m<>2
=>x=3/(m+3)
\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)
\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)
\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)
Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27
=>4m^2+36m+81=0
=>m=-9/2
Cho phương trình: m2x + m(x - 3) = 6(x - 1) (m là tham số) (1)
a. Giải phương trình (1) khi m = 1
b. Tìm m để phương trình (1) có một nghiệm duy nhất thỏa mãn biểu thức A=x^2+2x+3/x^2+2 đạt giá trị nhỏ nhất?
a) khi m = 1 ta có pt
x + 1.(x-3) = 6.(x-1)
=> x + x - 3 = 6x - 6
=> -4x = -3
=> x = 3/4
vậy với m=1 pt có no x =3/4
Cho các phương trình có tham số m sau:
3 m x - 1 = m x + 2 (1); m x + 2 = 2 m x + 1 (2);
m m x - 1 = m 2 x + 1 - m (3); m x - m + 2 = 0 (4).
Phương trình luôn vô nghiệm với mọi giá trị của m là:
A. Phương trình (1)
B. Phương trình (2)
C. Phương trình (3)
D. Phương trình (4).
Phương trình ax + b = 0 hoặc ax = b vô nghiệm khi a= 0 và b ≠ 0 .
Xét phương án C:
m m x - 1 = m 2 + 1 x - m ⇔ m 2 x = m 2 x + 1 - m
⇔ 0 x = 1 (vô lí) nên phương trình này vô nghiệm.
Chọn C.
Câu 1: Cho hai đường thẳng (d):y=mx+1 và (d'):y=m2x +m+1, trong đó m là tham số. Tìm m để (d) và (d') song song với nhau
Câu 2: Cho phương trình: x2-2mx+m2+2m+2=0 (m là tham số). Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\dfrac{2}{x_1}+\dfrac{2}{x_2}=x_1+x_2\)
Cho các phương trình có tham số m sau:
m x + m = 0 (1); m - 2 x + 2 m = 0 (2);
m 2 + 1 x + 2 = 0 (3) ; m 2 x + 3 m + 2 = 0 (4).
Phương trình luôn có nghiệm duy nhất với mọi giá trị của m là:
A. Phương trình (1)
B. Phương trình (2)
C. Phương trình (3)
D. Phương trình (4)
Phương trình ax + b = 0 có nghiệm duy nhất khi a ≠ 0 .
Xét phương trình m 2 + 1 x + 2 = 0 có hệ số a= m2 + 1> 0 với mọi m.
Do đó, phương trình này luôn có nghiệm duy nhất với mọi giá trị của m.
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
Gọi A là tập tất cả các giá trị thực của tham số m sao cho tập nghiệm của phương trình x . 2 x = x x - m + 1 + m 2 x - 1 có hai phần tử.Tìm số phần tử của A.
A. 1
B. Vô số
C. 3
D. 2
Đáp án D
Ta có x . 2 x = x x - m + 1 + m 2 x - 1 ⇔ x . 2 x = x 2 - m x + x + m . 2 x - m
⇔ 2 x x - m = x + 1 x - m ⇔ 2 x - x - 1 x - m = 0 ⇔ [ 2 x - x - 1 = 0 ( 1 ) x - m = 0 ( 2 )
Giải (1) , đặt f x = 2 x - x - 1 . Xét hàm số f x = 2 x - x - 1 trên ℝ , có f ' x = 2 x . ln 2 - 1
Phương trình f ' x = 0 ⇔ 2 x = 1 ln 2 ⇔ x = log 2 1 ln 2 = - log 2 ln 2
⇒ f x = 0 có nhiều nhất 2 nghiệm mà f 0 = f 1 ⇒ f x = 0 ⇔ [ x = 0 x = 1
Để phương trình đã cho có hai nghiệm phân biệt ⇔ 2 có 1 nghiệm hoặc 0
Vậy m = {0;1} là hai giá trị cần tìm.
Gọi A là tập tất cả các giá trị thực của tham số m sao cho tập nghiệm của phương trình x .2 x = x x − m + 1 + m 2 x − 1 có hai phần tử. Tìm số phần tử của A.
A. 1
B. Vô số
C. 3
D. 2
Gọi A là tập tất cả các giá trị thực của tham số m sao cho tập nghiệm của phương trình x .2 x = x x − m + 1 + m 2 x − 1 có hai phần tử. Tìm số phần tử của A.
A. 1
B. 2
C. 3
D. Vô số
Gọi A là tập tất cả các giá trị thực của tham số m sao cho tập nghiệm của phương trình x . 2 x = x x - m + 1 + m 2 x - 1 có hai phần tử. Tìm số phần tử của A.
A. 1
B. 2
C. 3
D. Vô số
Đáp án B.
Ta có x . 2 x = x x - m + 1 + m 2 x - 1 ⇔ x - m 2 x = x 2 - ( m - 1 ) x - m
⇔ x - m 2 x = ( x - m ) ( x + 1 ) ⇔ x - m 2 x - x - 1 = 0 ⇔ x = m 2 x = x + 1
Giải phương trình 2 x = x + 1 .
Nhìn vào màn hình ta thấy phương trình 2 x = x + 1 có hai nghiệm phân biệt là x = 0 ; x = 1 . Do vậy để tập nghiệm của phương trình đã cho có đúng hai phần tử thì m ∈ 0 ; 1 . Vậy có 2 giá trị của m thỏa mãn, ta chọn B.