Tìm nghiệm nguyên của phương trình: \(x^3+y^3-12xy+51=0\)
Tìm nghiệm nguyên của phương trình: \(x^3+y^3-12xy+51=0\)
Tìm nghiệm nguyên của hệ phương trình :
\(\hept{\begin{cases}10x^2+5y^2+13z^2=12xy+4xz+6zy\\x^3+y^3+z^3=288\end{cases}}\)
1) Chứng minh rằng: \(x^3-7y=51\) không có nghiệm nguyên
2) Tìm nghiệm nguyên của phương trình \(x^2-5y^2=27\)
3) Tìm nghiệm nguyên dương
a) \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
b)\(\dfrac{1}{x}+\dfrac{1}{y}=z\)
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).
tìm các nghiệm nguyên của phương trình sau: x^3+y^3-3xy-3=0
nhận xét chủ chương (sự chuẩn bị của nhà lý)
Tìm nghiệm nguyên của phương trình
\(x^2+x=y^4+y^3+y^2+y\)
2 Tìm nghiệm nguyên của phương trình :
\(3x^2+4y^2+6x+3y-4=0\)
Tìm nghiệm nguyên của phương trình : \(x^3+y^3+z^3=1012\)
1/Cho hệ phương trình \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\) tìm các giá trị nguyên âm của m để hệ phương trình trên có nghiệm (x;y) nguyên
2/ Tìm giá trị nguyên nhỏ nhất của m để phương trình \(x^3-mx=0\) có 3 nghiệm phân biệt
1. Số nghiệm của hệ phương trình \(\hept{\begin{cases}x^3+2xy^2+12=0\\x^28y^2=12\end{cases}}\)
2. Giá trị nghuyên nhỏ nhất của m để phương trình \(x^3+mx=0\)có 3 nghiệm riêng biệt.
3. Tìm m để phương trình \(x^4-2x^2+3-1=0\)có 4 nghiệm mà điểm biễu diễn của chúng trên trục hoành cách đều nhau.
4. Cho hệ phương trình \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
Tìm giá trị nguyên âm của m để hệ phương trình trên có nghiệm (x;y) nguyên
4.
(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1
<=> x-m2x=-2m2+m+1
<=> x(1-m)(1+m)=-(m-1)(1+2m)
với m=-1 thì pt vô nghiệm
với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn
với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)
=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)
để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)
=> m+1\(\in\)Ư(1)={1;-1}
=> m\(\in\){0;-2} mà m nguyên âm nên m=-2
vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề
Tìm nghiệm nguyên x,y của phương trình x2+17y2 + 34xy+51(x+y)=1740