Lời giải:
Biểu thức mũ ba làm ta liên tưởng đến đẳng thức quen thuộc:
\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Áp dụng vào bài toán:
\(x^3+y^3-12xy+51=0\)
\(\Leftrightarrow (x^3+y^3+4^3-12xy)-13=0\)
\(\Leftrightarrow (x+y+4)(x^2+y^2+16-xy-4x-4y)=13\)
Biểu thức \(x^2+y^2+16-xy-4x-4y\) có dạng \(x^2+y^2+z^2-xy-yz-xz\) nên hiển nhiên luôn không âm theo BĐT AM-GM.
Do đó ta chỉ xét các TH sau:
TH1: \(\left\{\begin{matrix} x+y+4=1\\ x^2+y^2+16-xy-4x-4y=13\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x+y=-3\\ (x+y)^2+16-3xy-4(x+y)=13\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x+y=-3\\ xy=8\end{matrix}\right.\)
Theo định lý Viete đảo $x,y$ là nghiệm của pt \(X^2+3X+8=0\Leftrightarrow (X+\frac{3}{2})^2+\frac{23}{4}=0\) (vô nghiệm)
TH2: \(\left\{\begin{matrix} x+y+4=13\\ x^2+y^2+16-xy-4x-4y=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x+y=9\\ (x+y)^2+16-3xy-4(x+y)=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x+y=9\\ xy=20\end{matrix}\right.\)
Khi đó $x,y$ là nghiệm của pt \(X^2-9X+20=0\)
\(\Rightarrow (x,y)=(4,5)\) và hoán vị
Vậy......