Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
A8_ Võ Thị Thương
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2023 lúc 9:43

Chọn A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 9 2018 lúc 9:43

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 5 2017 lúc 1:53

Đáp án C

Gọi E và H lần lượt là hình chiếu của A lên CB và SE

Ta có: A E = A B sin A B E ^ = s i n 60 ° = a 3 2  

A H = A E sin 60 ° = 3 2 a . 3 2 = 3 a 4  

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 2 2017 lúc 8:47

Chọn C

Hà Thị Ngọc Dung
Xem chi tiết
Lê Song Phương
16 tháng 6 2023 lúc 10:14

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

Lê Song Phương
16 tháng 6 2023 lúc 10:15

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 11 2019 lúc 7:10

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2018 lúc 14:14

Nguyễn Tuấn Dương
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 6 2021 lúc 23:39

Dễ dàng chứng minh \(BD\perp\left(SAC\right)\Rightarrow BD\perp SC\)

Gọi O là tâm đáy, kẻ \(OH\perp SC\Rightarrow SC\perp\left(BDH\right)\)

\(\Rightarrow\widehat{BHD}\) hoặc góc bù của nó là góc giữa (SBC) và (SCD) \(\Rightarrow\widehat{BHD}=60^0\) hoặc \(120^0\)

\(\Rightarrow\widehat{BHO}\) bằng \(30^0\) hoặc \(60^0\)

Tam giác ABD đều \(\Rightarrow BD=a\) \(\Rightarrow OB=\dfrac{a}{2}\)

TH1: \(\widehat{BHO}=30^0\)

\(\Rightarrow OH=\dfrac{OB}{tan30^0}=\dfrac{a\sqrt{3}}{2}=OC\Rightarrow\Delta\) vuông OCH có cạnh huyền bằng cạnh góc vuông (loại)

TH2: \(\widehat{BHO}=60^0\Rightarrow OH=\dfrac{OB}{tan60^0}=\dfrac{a\sqrt{3}}{6}\)

\(\Rightarrow SA=AC.tan\widehat{SCA}=AC.\dfrac{OH}{\sqrt{OC^2-OH^2}}=\dfrac{a\sqrt{6}}{4}\)

Từ A kẻ \(AM\perp SB\Rightarrow AM\perp\left(SBC\right)\Rightarrow AM=d\left(A;\left(SBC\right)\right)\)

\(AD||BC\Rightarrow AD||\left(SBC\right)\Rightarrow d\left(BK;AD\right)=d\left(AD;\left(SBC\right)\right)=d\left(A;\left(SBC\right)\right)=AM\)

\(\dfrac{1}{AM^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}=\dfrac{11}{3a^2}\Rightarrow AM=\dfrac{a\sqrt{33}}{11}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 4 2018 lúc 3:57

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (BD ⊥ SA & BD ⊥ AC ⇒ BD ⊥ (SAC)

⇒ BC ⊥ SC.

b) (BC ⊥ SA & BC ⊥ AB ⇒ BC ⊥ (SAB)

⇒ (SBC) ⊥ (SAB).

c) + Xác định góc α giữa đường thẳng SC và mp(ABCD):

(C ∈(ABCD) & SA ⊥ (ABCD) ⇒ ∠[(SC,(ABCD))] = ∠(ACS) = α

+ Tính góc:

Tam tam giác vuông SCA, ta có:

tanα = SA/AC = √3/3 ⇒ α   =   30 o .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 11 2018 lúc 12:52

Hình vuông ABCD có độ dài đường chéo bằng a√2 suy ra hình vuông đó có cạnh bằng a.

Chọn hệ trục tọa độ Oxyz như hình vẽ. Ta có A (0;0;0), B (a;0;0), C (a;a;0), S (0;0;a).