Chứng tỏ 1/3-2/3^2+…+99/3^99-100/3^100<3/16
C = 1/3-2/3^2+3/3^3-4/3^4+ .....+99/3^99-100/3^100 chứng tỏ C < 3/16 ( giúp mình với mai nộp rồi)
Câu hỏi của Biêtdongsaigon - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo link này nhé!
Hãy chứng tỏ rằng : 100-[1+1/2+1/3+...+1/100] = 1/2+2/3+3/4+...+99/100
Mình cần gấp
Ta có : \(\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)
= \((1-\frac{1}{2})+(1-\frac{1}{3})+...+(1-\frac{99}{100})\)(100 cặp số )
= \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)(100 số hạng 1)
= \(1\times100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{100}\right)\)
= \(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=> 100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100
Bạn cố giải cho mình dễ hiểu hơn ko?
Chứng tỏ rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
A= \(\dfrac{1}{3}-\dfrac{2}{3^2}+....+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
3A= 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+.....+\dfrac{99}{3^{98}}\) - \(\dfrac{100}{3^{99}}\)
A + 3A = 1- \(\dfrac{1}{3}+\dfrac{1}{3^2}\) - \(\dfrac{1}{3^3}+....+\dfrac{1}{3^{99}}-\dfrac{1}{3^{100}}\)
=> 4A < 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}\) \(\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
Đặt : B = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+....+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
3B = 3 - 1 + \(\dfrac{1}{3}\) - \(\dfrac{1}{3^2}+.....+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}\)
B + 3B = 3 - \(\dfrac{1}{3^{99}}\)
4B = 3 - \(\dfrac{1}{3^{99}}\) < 3 => B < \(\dfrac{3}{4}\)
=> 4A < \(\dfrac{3}{4}\) => A < \(\dfrac{3}{16}\) ĐPCM
Chứng tỏ
a, 1/2-1/4+1/8-1/16+1/32-1/64<1/3
b, 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
c, 1/2.3/4.5/6...9999/10000<1/100
A=1*2-1/2! + 2*3-1/3! +....+ 99*100-1/100!
Chứng tỏ rằng A<1
\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Đề bài: Chứng tỏ rằng (trên)
Cứu mị!
Chứng tỏ rằng \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Chưng tỏ
a, S= 1/2^2+1/3^2+...+1/9^2
Chứng tỏ 2/5<S<8/9
b, 1/2-1/4+1/8-1/16+1/32-1/64<1/3
c, 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
Chứng tỏ rằng
[200-(3+2/3+2/4+2/5+...+2/100]:[1/2+2/3+3/4+...+99/100]=2
* Bỏ ngoặc vuông đi :(
\(\text{Ta có:}\)
\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)
\(\rightarrow200-2-\left(1+\frac{2}{3}+...+\frac{2}{100}\right)\)
\(\rightarrow198-\left(1+\frac{2}{3}+...+\frac{2}{100}\right)\)
\(\rightarrow198-\left(1+\frac{2}{3}+...+\frac{2}{100}\right)\)
\(\rightarrow2.[99-\left(\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}\right)]\) \(\left(1\right)\)
\(\text{Ta có:}\)
\(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
\(\text{Rút}\)\(\left(1\right)\)\(\text{ra có 99 số}\)
\(\rightarrow99-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\) \(\left(2\right)\)
\(\text{Từ}\)\(\left(1\right)\)\(\text{và}\)\(\left(2\right)\)\(\Rightarrow\)\(200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right):\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)=2\)