Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Trần Anh Thy
Xem chi tiết
²ᵏ⁷
Xem chi tiết

bn tham khao nha

https://olm.vn/hoi-dap/detail/6372485534.html

Nguyễn Văn Tuấn Anh
13 tháng 8 2019 lúc 21:18

Ta có: \(\left(2x-5\right)^2\ge0\forall x\) ;  \(\left(3y+4\right)^{2014}\ge0\forall y\)

\(\Rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\forall x;y\)

Để thỏa mạn đề bài :

\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2012}=0\\\left(3y+4\right)^{2014}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}}\)

Vậy............

Fudo
13 tháng 8 2019 lúc 21:23

                                                            Bài giải

Vì \(\left(2x-5\right)^{2012}\) và \(\left(3y+4\right)^{2014}\) là hai số luôn lớn hơn hoặc bằng 0

Vậy chỉ xảy ra trường hợp \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}=0\)

\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2012}=0\\\left(3y+4\right)^{2014}=0\end{cases}}\)        \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\)         \(\Leftrightarrow\hept{\begin{cases}2x=0+5=5\\3y=0-4=-4\end{cases}}\)            \(\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)

               Vậy \(\left(x\text{ , }y\right)=\left(\frac{5}{2}\text{ ; }-\frac{4}{3}\right)\)

\(\text{︵✰ßล∂ ß๏у }\)

Roxie
Xem chi tiết
Vũ Minh Tuấn
11 tháng 10 2019 lúc 17:54

Ta có:

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2012}\ge0\\\left(3y+4\right)^{2014}\ge0\end{matrix}\right.\forall xy.\)

=> \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\) \(\forall xy\)

\(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0.\)

=> \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}=0\)

=> \(\left(2x-5\right)+\left(3y+4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)

Chúc em học tốt!

Trịnh Thị Minh Ngọc
Xem chi tiết
bùi tiến long
Xem chi tiết
Dũng Lương Trí
29 tháng 3 2019 lúc 20:44

Ta có : \(\left(2x-5\right)^{2012}\ge0\forall x\)

            \(\left(3y+4\right)^{2014}\ge0\forall y\)

\(\rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\forall x,y\)

Theo bài : \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0\)

\(\rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}=0\)

\(\rightarrow\left(2x-5\right)^{2012}=0,\left(3y+4\right)^{2014}=0\)

\(\rightarrow2x-5=0,3y+4=0\)

\(\rightarrow x=\frac{5}{2};y=\frac{-4}{3}\)

Tự tìm M nhé bạn

Nguyễn Lương Bích
31 tháng 5 2020 lúc 20:31

1, M + (5x2-2xy)= 6x2+9xy-y2

    M                    =(6x2+9xy-y2)- (5x2-2xy)

    M                    = 6x2+9xy-y2-5x2+2xy

    M                    = (6x2-5x2)+(9xy+2xy)-y2

    M                    = x2+11xy-y2

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
4 tháng 6 2020 lúc 5:48

* M + ( 5x2 - 2xy ) = 6x2 + 9xy - y2

<=> M = ( 6x2 + 9xy - y2 ) - ( 5x2 - 2xy )

<=> M = 6x2 + 9xy - y2 - 5x2 + 2xy

<=> M = x2 + 11xy - y2

\(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0\)

Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2012}\ge0\forall x\\\left(3y+4\right)^{2014}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\)

Dấu = xảy ra <=> \(\hept{\begin{cases}\left(2x-5\right)^{2012}=0\\\left(3y+4\right)^{2014}=0\end{cases}}\)

                     <=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\)

                     <=> \(\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)

Thay x = 5/2 ; y = -4/3 vào M ta được :

\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)

\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)

\(M=\frac{-1159}{36}\)

Vậy M = -1159/36 khi x = 5/2 ; y = -4/3

Khách vãng lai đã xóa
trọng tình
Xem chi tiết
Phạm Hoàng Linh
Xem chi tiết
ILoveMath
4 tháng 3 2022 lúc 14:25

\(\left|2x-2011\right|+\left(3y+2012\right)^{2012}=0\)

Vì \(\left|2x-2011\right|\ge0,\left(3y+2012\right)^{2012}\ge0\)

\(\Rightarrow\left|2x-2011\right|+\left(3y+2012\right)^{2012}\ge0\)

Mà \(\left|2x-2011\right|+\left(3y+2012\right)^{2012}=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-2011=0\\3y+2012=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{2011}{2}\\y=-\dfrac{2012}{3}\end{matrix}\right.\)

dao thi thanh huyen
Xem chi tiết
Hoàng Thủy Tiên
26 tháng 7 2016 lúc 16:26

\(\left|x-3y\right|^{2014}+\left|y+4\right|^{2012}=0\)

\(Do\)\(\left|x-3y\right|^{2014}\ge0\)\(;\left|y+4\right|^{2012}\ge0\)

\(\Rightarrow\orbr{\begin{cases}\left|x-3y\right|^{2014}=0\\\left|x+4\right|^{2012}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=12\\y=-4\end{cases}}}\)

\(KL\)

nguyen hai yen
Xem chi tiết