(x2 +4x+6 / x+2) + ( x2 + 16x + 72/x+8) = ( x2 + 8x + 20/x+4) + ( x2 + 12x + 42/ x+6)
(x^2+4x+6)/x+2 + (x^2+16x+72)/x+8 = (x^2+8x+20)/x+4 + (x^2+12x+42)/x+6
Gải phương trình Sau
\(\dfrac{x^2+4x+6}{\text{x}+2}+\dfrac{x^2+16x+72}{x+8}\)=\(\dfrac{x^2+8x+20}{\text{x}+4}+\dfrac{x^2+12x+42}{x+6}\)
Giải pt:
\(\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+16x+72}{x+8}=\dfrac{x^2+8x+20}{x+4}+\dfrac{x^2+12x+42}{x+6}\)
\(\Leftrightarrow1+\dfrac{2}{x+2}+1+\dfrac{8}{x+8}=1+\dfrac{4}{x+4}+1+\dfrac{6}{x+6}\)
\(\Leftrightarrow\dfrac{1}{x+2}+\dfrac{4}{x+8}=\dfrac{2}{x+4}+\dfrac{3}{x+6}\)
\(\Leftrightarrow\dfrac{4}{x+8}-\dfrac{3}{x+6}=\dfrac{2}{x+4}-\dfrac{1}{x+2}\)
\(\Leftrightarrow\dfrac{4x+24-3\left(x+8\right)}{\left(x+8\right)\left(x+6\right)}=\dfrac{2x+4-\left(x+4\right)}{\left(x+4\right)\left(x+2\right)}\)
\(\dfrac{x}{\left(x+8\right)\left(x+6\right)}=\dfrac{x}{\left(x+4\right)\left(x+2\right)}\)
x=0 là nghiệm
x khác 0
\(\left\{{}\begin{matrix}x\ne\left\{-8;-6;-4;-2\right\}\\\left(x+4\right)\left(x+2\right)=\left(x+8\right)\left(x+6\right)\end{matrix}\right.\)<=>x^2 +6x+8 =x^2 +14x+48
-40 =8x=> x =-5 nhận
x={-5;0}
Giải phương trình:
\(\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)
=>\(\frac{\left(x+2\right)^2+2}{x+2}+\frac{\left(x+8\right)^2+8}{x+8}\)=\(\frac{\left(x+4\right)+4}{x+4}+\frac{\left(x+6\right)^2+6}{x+6}\)
=>2x+10+\(\frac{2}{x+2}+\frac{8}{x+8}\)=2x+10+\(\frac{4}{x+4}+\frac{6}{x+6}\)
=>-x\(\left(\frac{1}{x+2}-\frac{1}{x+4}-\frac{1}{x+6}+\frac{1}{x+8}\right)\)=0
=>\(\orbr{\begin{cases}x=0\\\frac{1}{x+2}-.....+\frac{1}{x+8}=0\end{cases}}\)
Voi \(\frac{1}{x+2}-....\)=0 ta co
Dat x+5=t
=>\(\frac{1}{t-3}-\frac{1}{t-1}-\frac{1}{t+1}+\frac{1}{t+3}\)=0
=> \(2t\left(\frac{1}{t^2-1}+\frac{1}{t^2-9}\right)=0\)
=>t=0
=>x=-5
Vay phuong trinh co nghiem x=0;-5
toán lớp 8 mà đi giải phương trình hả má
ĐKXĐ:\(x\ne-2;-4;-6;-8\)
\(\frac{x^2+4x+6}{x+2}+\frac{x^2+16+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)
\(\Leftrightarrow\frac{\left(x+2\right)^2+2}{x+2}+\frac{\left(x+8\right)^2+8}{x+8}=\frac{\left(x+4\right)^2+4}{x+4}+\frac{\left(x+6\right)^2+6}{x+6}\)
\(\Leftrightarrow\frac{2}{x+2}+\frac{8}{x+8}=\frac{4}{x+4}+\frac{6}{x+6}\)
\(\frac{10+32}{\left(x+2\right)\left(x+8\right)}=\frac{10x+48}{\left(x+4\right)\left(x+6\right)}\)
\(\Leftrightarrow\frac{5x+16}{\left(x+2\right)\left(x+8\right)}=\frac{5x+24}{\left(x+4\right)\left(x+6\right)}\)
\(\Leftrightarrow\left(5x+16\right)\left(x+4\right)\left(x+6\right)=\left(5x+24\right)\left(x+2\right)\left(x+8\right)\)
\(\Leftrightarrow x^2+5x=0\)(bạn tự biến đổi nhé)
\(\Leftrightarrow x=0;-5\)(tm ĐKXĐ)
Vậy phương trình có nghiệm 0;-5 (mình làm hơi tắt bn thông cảm nha)
Giải phương trình:
\(\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)
=> \(\frac{(x+2)^2+2}{x+2}+\frac{(x+8)^2+8}{x+8}=\frac{(x+4)+4}{x+4}+\frac{(x+6)^2+6}{x+6}\)
=> 2x + 10 + \(\frac{2}{x+2}+\frac{8}{x+8}=2x+10+\frac{4}{x+4}+\frac{6}{x+6}\)
=>-x \((\frac{1}{x+2}-\frac{1}{x+4}-\frac{1}{x+6}-\frac{1}{x+8})=0\)
\(x=0\)
\(=>\orbr{\frac{1}{x+2}}-.....+\frac{1}{x+8}=0\)
Với \(\frac{1}{x+2}-...=0\). Ta có :
Đặt x + 5 = t
=> \(\frac{1}{t-3}-\frac{1}{t-1}-\frac{1}{t+1}+\frac{1}{t+3}=0\)
\(=>2t(\frac{1}{t^2-1}+\frac{1}{t^2-9})=0\)
=> t = 0
=> x = -5
Vậy phương trình có nghiệm x= 0 ; - 5
giải phương trình \(\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+16x+72}{x+8}=\dfrac{x^2+8x+20}{x+4}+\dfrac{x^2+12x+42}{x+6}\)
\(\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+16x+72}{x+8}=\dfrac{x^2+8x+20}{x+4}+\dfrac{x^2+12x+42}{x+6}\left(đkxđ:x\ne-2;-8;-4;-6\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+8\right)^2+8}{x+8}=\dfrac{\left(x+4\right)^2+4}{x+4}+\dfrac{\left(x+6\right)^2+6}{x+6}\)
\(\Leftrightarrow x+2+\dfrac{2}{x+2}+x+8+\dfrac{8}{x+8}=x+4+\dfrac{4}{x+4}+x+6+\dfrac{6}{x+6}\)
\(\Leftrightarrow\dfrac{2}{x+2}+\dfrac{8}{x+8}=\dfrac{4}{x+4}+\dfrac{6}{x+6}\)
\(\Leftrightarrow\dfrac{2}{x+2}-1+\dfrac{8}{x+8}-1=\dfrac{4}{x+4}-1+\dfrac{6}{x+6}-1\)
\(\Leftrightarrow\dfrac{-x}{x+2}+\dfrac{-x}{x+8}=\dfrac{-x}{x+4}+\dfrac{-x}{x+6}\)
\(\Leftrightarrow\left(-x\right)\left(\dfrac{1}{x+2}+\dfrac{1}{x+8}-\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\\dfrac{1}{x+2}+\dfrac{1}{x+8}-\dfrac{1}{x+4}-\dfrac{1}{x+6}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Giải phương trình :))
\(\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+16x+72}{x+8}=\dfrac{x^2+8x+20}{x+4}+\dfrac{x^2+12x+42}{x+6}\)
ĐKXĐ: x\(\ne\) -2; x\(\ne\) -4; x\(\ne\) -6; x\(\ne\) -8;
\(\Leftrightarrow\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+8\right)^2+8}{x+8}=\) \(\dfrac{\left(x+4\right)^2+4}{x+4}+\dfrac{\left(x+6\right)^2+6}{x+6}\)
\(\Leftrightarrow\left(x+2+\dfrac{2}{x+2}\right)+\left(x+8+\dfrac{8}{x+8}\right)=\)
\(\left(x+4+\dfrac{4}{x+4}\right)+\left(x+6+\dfrac{6}{x+6}\right)\)
\(\Leftrightarrow\dfrac{2}{x+2}+\dfrac{8}{x+8}=\dfrac{4}{x+4}+\dfrac{6}{x+6}\)
=> 2.(x+4)(x+8)(x+6) + 8(x+2)(x+4)(x+6)=4(x+2)(x+6)(x+8)
+ 6(x+2)(x+4)(x+8)
<=>(2x+8)(x2 + 14x+64) + (8x+48)(x2+6x+8) - (4x+8)(x2 + 14x+64)
-(6x+48)(x2+6x+8)
<=> (x2 + 14x+64)(2x+8 -4x -8) + (x2+6x+8)(8x+48+6x-48)=0
<=> -2x(x2 + 14x+64)+ 2x(x2+6x+8) = 0
<=> -2x3 -28x2 -128x+ 2x3 +12x2 +16x = 0
<=> -16x2 - 112x = 0
<=> -x(16x+112) = 0
<=>\(\left[{}\begin{matrix}x=0\\16x+112=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\left(tmđk\right)\\x=7\left(tmđk\right)\end{matrix}\right.\)
vậy S={0;7}
sửa bài:
<=>﴾2x+8﴿﴾x2 + 14x+48﴿ + ﴾8x+48﴿﴾x2 +6x+8﴿ ‐ ﴾4x+8﴿﴾x2 + 14x+48﴿
‐﴾6x+48﴿﴾x2 +6x+8﴿
<=> ﴾x2 + 14x+48﴿﴾2x+8 ‐4x ‐8﴿ + ﴾x2 +6x+8﴿﴾8x+48+6x‐48﴿=0
<=> ‐2x﴾x2 + 14x+48﴿+ 2x﴾x2 +6x+8﴿ = 0
<=> ‐2x3 ‐28x2 ‐96x+ 2x3 +12x2 +16x = 0
<=> ‐16x2 ‐ 80x = 0
<=> ‐x﴾16x+80﴿ = 0
<=>\(\left[{}\begin{matrix}x=0\\16x+80=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
vậy : S={0;-5}
Giải Phương trình
\(\frac{x^{2^{ }}+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)
Giải phương trình \(\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)
x= 2125500 và x = 0 là nghiệm của phương trình