Tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm AH và BH. Gọi O là giao điểm AN với CM. C/m
a. Tam giác ABN đồng dạng tam giác CAM
b. AN vuông góc CM
c. AH^2=4CM.MO
Tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm AH và BH. Gọi O là giao điểm AN với CM. C/mMN Vuông góc vs ac
Xét ΔHAB có
M là trung điểm của AH(gt)
N là trung điểm của BH(gt)
Do đó: MN là đường trung bình của ΔHBA(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AB và \(MN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay MN\(\perp\)AC(đpcm)
Cho tam giác ABC vuông tại A đường cao AH gọi M và N lần lượt là trung điểm AH và BH gọi O là giao điểm AN với CM. Chứng minh
a) AN vuông góc với CM
b) AH^2= 4MC.MO
Cho tam giác ABC vuông tại A đường cao AH gọi M và N lần lượt là trung điểm AH và BH gọi O là giao điểm AN với CM. Chứng minh
a) AN vuông góc với CM
b) AH^2= 4MC.MO
Tam giác ABC vuông tại A, có đường cao AH. M, N lần lượt là trung điểm của AH, BH.
a) Cm: tam giác HMN đồng dạng tam giác HAB.
b) Cm: HM.HA=HN.HC
c) Cm: tam giác AHN đồng dạng tam giác CHM.
d) Gọi K là giao điểm của MN với AC, I là giao điểm của CM với AN. Cm: KM là tia phân giác góc IKH.
a: Xét ΔHMN và ΔHAB có
\(\dfrac{HM}{HA}=\dfrac{HN}{HB}\)
\(\widehat{MHN}\) chung
Do đó: ΔHMN đồng dạng với ΔHAB
b:
Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{HBA}\right)\)
Do đó: ΔHAB đồng dạng với ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
\(HM\cdot HA=\dfrac{1}{2}\cdot HA\cdot HA=\dfrac{1}{2}HA^2\)
\(HN\cdot HC=\dfrac{1}{2}\cdot HB\cdot HC=\dfrac{1}{2}\cdot HA^2\)
Do đó: \(HM\cdot HA=HN\cdot HC\)
c: \(HM\cdot HA=HN\cdot HC\)
=>\(\dfrac{HN}{HM}=\dfrac{HA}{HC}\)
Xét ΔHAN vuông tại H và ΔHCM vuông tại H có
\(\dfrac{HA}{HC}=\dfrac{HN}{HM}\)
Do đó: ΔHAN đồng dạng với ΔHCM
Cho tam giác ABC vuông tại A ,đường cao AH . gọi M và N lần lần lượt là trung điểm cua các đoạn thẳng AH và BH. CMR CM vuông góc với AN
cho tam giác abc vuông tại a đường cao ah M,N lần lượt là trung điểm của AH và BH O là giao điểm của AN và CM.CMR:AN vuông góc với Cm và AH2=4MC.MO
Cho tam giác AB vuông tại A, AB<AC, Ah là đường ao
a) CM: Tam giác ABC đồng dạng với tam giác HAC
b)CM: HA2 =HB.HC
c) Gọi D,E lần lượt là trung điểm của AB, BC. CM: CH=4DE
d) Gọi M là giao điểmcủa đường vuông góc BC tại B và đường thẳng DE. Gọi N là giao điểm của AH và Cm. CM: N là trung điẻm của AH
bn vẽ hình đi thì mọi người dễ giải hơn đó
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot25=15\cdot20\)
\(\Leftrightarrow AH\cdot25=300\)
hay AH=12(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay HC=16(cm)
Vậy: BC=20cm; AH=12cm; HC=16cm
cho tam giác ABC vuông tại A, đường cao AH, biết AB = 6cm AC =8cm. a) CM: tam giác BAH đồng dạng với tam giác BCA. tính BC,BH b) gọi M là trung điểm của AB, N là hình chiếu của H trên AC. CM HN^2=CN*AN c) gọi I là giao điểm của MH và AC. CM CI*AB=2CN*MI
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
b: ΔHAC vuông tại H có HN vuông góc AC
nên HN^2=NA*NC