Giải phương trình: (x^2+1)^2+3x(x^2+1)+2x^2=0
Tính a-b/a+b biết 2a^2+2b^2=5ab và b>a>0
1. Giải phương trình:
(x^2+1)^2+3x(x^2+1)+2x^2=0
2. Tính a+b/a-b biết 2a^2+2b^2=5ab và b>a>0
Ta có:
\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow x^4+2x^2+1+3x^3+3x+2x^2=0\)
\(\Leftrightarrow x^4+3x^3+4x^2+3x+1=0\)
Xét x = 0 không là nghiệm của pt
Chia 2 vế của pt cho x2 ta được:
\(x^2+3x+4+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+\left(3x+\dfrac{3}{x}\right)+4=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{x}\right)+4=0\)
Đặt a = \(x+\dfrac{1}{x}\)
\(\Leftrightarrow x^2+2+\dfrac{1}{x^2}=a^2\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}=a^2-2\)
Suy ra:
\(\Leftrightarrow\left(a^2-2\right)+3a+4=0\)
\(\Leftrightarrow a^2+3a+2=0\)
\(\Leftrightarrow\left(a+1\right)\left(a+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-1\\a=-2\end{matrix}\right.\)
Với a = -1
=> \(x+\dfrac{1}{x}=-1\)
\(\Rightarrow x^2+1=-x\) (loại)
Với a = -2
=> \(x+\dfrac{1}{x}=-2\)
\(\Rightarrow x^2+1+2x=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x=-1\)
Vây pt có tập nghiệm là: \(S=\left\{-1\right\}\)
Ta có:\(2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-ab-4ab+2b^2=0\)
\(\Leftrightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-2b=0\left(loai\right)\\2a-b=0\end{matrix}\right.\Leftrightarrow2a=b\)
\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{a+2a}{a-2a}=-3\)
1)Cách khác:
\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2+x\left(x^2+1\right)+2x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)+2x\left(x^2+1+x\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(loai\right)\\x^2+2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
1. Giải phương trình $\sqrt2.\sqrt{2x^2 + x + 1} - \sqrt{4x-1} + 2x^2+3x-3 = 0$.
2. Cho các số thực dương $a, b, c$ thỏa mãn $ab+bc+ca = 3.$ Chứng minh
$\dfrac{a^3}{b+2c} + \dfrac{b^3}{c+2a} + \dfrac{c^3}{a+2b} \ge 1.$
b, \(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\ge1\)
\(\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ac+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)( Bunhia dạng phân thức )
mà \(a^2+b^2+c^2\ge ab+bc+ac\)
\(=\frac{\left(ab+bc+ac\right)^2}{3+2\left(ab+ac+bc\right)}=\frac{9}{3+6}=1\)( đpcm )
1.
Điều kiện .
Phương trình tương đương với \\
Với ta có:
.
Suy ra .
Vậy phương trình có nghiệm duy nhất
2.
Đặt
Áp dụng bất đẳng thức Cauchy cho hai số dương và ta có
.
Tương tự , .
Cộng các vế ta có .
Mà nên (ta có đpcm).
1.
√2 × √(2x2+x+1) + √(4x-1) + 3x-3=0
⇌[√(4x2+2x+2)-2] - [√(4x-1) -1] + (2x2+3x-2)=0
⇌(4x2+2x-2)/[√(4x2+2x+2)+2] - (4x-2)/[√(4x-1)+1] + (2x-1)(x+2) =0
⇔(2x-1) × [(2x+2)/√(4x2+2x+2+2) - 2/(√4x-1)+1+x+2]=0
Với x≥1/4 thì (2x+2)/(√4x2+2x+2+2)≥0 hoặc x+2>2 hoặc (√4x-1)+1≥1 ⇌ 2/[(√4x-1)+1]≤2
⇒(2x+2)/[(√4x2+2x+2)+2] - 2/[(x-1)+1]+x+2>0-2+2=0
⇌ 2x-1=0⇒x=1/2
Vậy x=1/2
2.
Áp dụng bất đẳng thức ta có :
Vế trái = a4/(ab +2ac) + b4/(bc+2ab) + c4/(ac+2bc)≥[(a2 + b2 +c2)2]/[3(ab+bc+ca) =[(a2+b2+c2)2]/9
Ấp dụng bất đẳng thức ta có :
ab+bc+ca≤a2+b2+c2
Vế trái ≥ [(a2+b2+c2)]/9≥32/9 =1
⇒ Vế trái ≥1 (đpcm)
Dấu = xảy ra khi a=b=c=1
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
Câu 1 : Giải Phương trình
8(x+1/x)+4(x^2+1/x^2)^2-4(x^2+1/x^2)^2(x+1/x)^2=(x+4)^2
Câu 2 :Tìm giá trị nguyên của x để biểu thức B=4x^3-6x^2+8x/2x-1 nhận giá trị nguyên
Câu 3: Cho 1/a+1/b+1/c=0 vs a,b,c khác 0 và m= b^2c^2/a+c^2a^2/b+a^2b^2/a . c/m M=3abc
1/Giải phương trình sau :
\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)
2/ Cho a, b, c là các số khác 0 và đôi một khác nhau , thỏa mãn đẳng thức a + b + c = 0 . Chứng minh rằng :
\(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2=0\)
2, (trích đề thi học sinh giỏi Bến Tre-1993)
\(a^3+a^2b+ca^2+b^3+ab^2+b^2c+c^3+c^2b+c^2a=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
mà a+b+c=0 => (a+b+c)(a2+b2+c2)=0
=> đpcm
*bài này tui làm tắt, không hiểu ib
Vừa lm xog bị troll chứ, tuk quá
\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)
\(\Leftrightarrow\frac{x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{a^2x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{b^2\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}+\frac{a\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}=\frac{x^2\left(b^2-x^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}\)
Khử mẫu :
\(\Leftrightarrow2x^3b^2-xb^4-x^5-2a^2x^3b^2+a^2xb^4+a^2x^5-b^2x^2+b^4+2ab^2x^2-ab^4-ax^4=x^2b^2-x^4\)
Tự xử nốt, lm bài này muốn phát điên mất.
đk \(x\ne\pm b\)
quy đồng mẫu, khử mẫu chung, ta đưa phương trình đã cho về phương trình
\(\left(x^2-b^2\right)\left[\left(1-a\right)-\left(1-a^2\right)x\right]=0\)(1)
với điều kiện x2-b2 khác 0, phương trình (1)trở thành (1-a)-(1-a2)x=0 <=> (1-a2)x=1-a (2)
với a=\(\pm\)1 => (2) vô ngiệm => (1) cũng vô nghiệm và phương trình đã cho cũng vô nghiệm
với a khác \(\pm\)1 => (2) có nghiệm \(x=\frac{1}{1+a}\)
để giá trị x=\(\frac{1}{1+a}\)là nghiệm của phương trình đã cho thì \(\frac{1}{1+a}\ne\pm b\)
kết quả: a=\(\pm1\Rightarrow S=\varnothing\)
\(\hept{\begin{cases}a\ne\pm1\\\frac{1}{1+a}\ne\pm b\end{cases}\Rightarrow S=\left\{\frac{1}{1+a}\right\}}\)
1. Giải phương trình nghiệm nguyên: y3 = x3 + x2 + x + 1
2. Tìm giá trị lớn nhất của biểu thức: P = \(\frac{x}{\left(x+a\right)^2}\) trong đó a > 0 cho trước
3. Cho 2a2 + 2b2 = 5ab và b>a>0. Tính giá trị biểu thức \(\frac{a+b}{a-b}\)
4. Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). Tính A = \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
Tìm a và b để bất phương trình: (x - 2a + b - 1)(x + a - 2b + 1) ≤ 0 có tập nghiệm là đoạn [0; 2]
Tập nghiệm của bất phương trình đã cho là đoạn [2a - b + 1; -a + 2b - 1] (nếu 2a - 6 + 1 ≤ -a + 26 - 1) hoặc là đoạn [-a + 26 - 1 ; 2a - 6 + 1] (nếu -a + 2b - 1 ≤ 2a - 6 - 1)
Do đó để tập nghiệm của bất phương trình đã cho là đoạn [0;2], điều kiện cần và đủ là:
Giải (1) ta được a = b = 1. Giải hệ (2) ta được a = 1/3, b = 5/3
Đáp số: a = b = 1 hoặc a = 1/3, b = 5/3
Giải các phương trình sau : 2 4x – 2 a) 2x - 3 = 5 b) (x + 2)(3x - 15) 0 z +1 I - 2 (x+ 1) (2 – 2) Câu 2: (2 điểm) số a) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục 2x + 2 <2+ 3 b) Tìm x để giá trị của biểu thức 3x - 4 nhỏ hơn giá trị của biểu thức 5x - 6
1:
a: 2x-3=5
=>2x=8
=>x=4
b: (x+2)(3x-15)=0
=>(x-5)(x+2)=0
=>x=5 hoặc x=-2
2:
b: 3x-4<5x-6
=>-2x<-2
=>x>1
Cho biểu thức: A=\(\left(\frac{1}{2a+b}-\frac{a^2-1}{2a^3-b+2a-a^2b}\right)\times\)\(\left(\frac{4a+2b}{a^3b+ab}-\frac{2}{a}\right)\)
a) Rút gọn A
b) Tính giá trị A biết 4a2+b2= 5ab và a>b>0
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0