Tìm số nguyên n biết rằng: 2n +10 chia hết cho 2n - 8
tìm số nguyên n biết rằng (3n-8) chia hết cho (2n+3)
Vì (3n - 8) ⋮ (2n + 3) => 2(3n - 8) ⋮ (2n + 3) hay (6n - 16) ⋮ (2n + 3) => [3(2n + 3) - 25] ⋮ (2n + 3) mà 3(2n + 3) ⋮ (2n + 3) => 25 ⋮ (2n + 3) => (2n + 3) ∊ Ư(25) = {-25;-5;-1;1;5;25}. Ta có bảng:
2n + 3 | -25 | -5 | -1 | 1 | 5 | 25 |
2n | -28 | -8 | -4 | -2 | 2 | 22 |
n | -14 | -4 | -2 | -1 | 1 | 11 |
Kết luận | Thỏa mãn | Thỏa mãn | Thỏa mãn | Thỏa mãn | Thỏa mãn | Thỏa mãn |
Vậy n ∊ {-14;-4;-2;-1;1;11}
Tìm số nguyên n biết rằng 2n – 3 chia hết cho n -1
\(\Leftrightarrow n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{2;0\right\}\)
tìm số nguyên n để
a) 2n +1 chia hết cho n + 2
b) В = n+3/ п-2 là số nguyên
c) C = 3n+7/ n- 1 là số nguyên
d) D =n+10/ 2n-8 là số nguyên
a: Ta có: \(2n+1⋮n+2\)
\(\Leftrightarrow2n+4-3⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-1;-3;1;-5\right\}\)
b: Để B là số nguyên thì \(n+3⋮n-2\)
\(\Leftrightarrow n-2+5⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
c: Để C là số nguyên thì \(3n+7⋮n-1\)
\(\Leftrightarrow3n-3+10⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
Bài 1:Cho A=(n-1)(2n-3)-2n(n-3)-4n. Chứng minh A chia hết cho 3 với mọi số nguyên n.
Bài 2: Tìm số nguyên n để B= (n+2)(2n-3)+n(2n-3)+n(n+10) chia hết cho n+3.
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
Tìm số nguyên n, biết rằng:
2n + 1 chia hết cho n - 2
Ta có: \(\frac{2n+1}{n-2}=\frac{2n-4+5}{n-2}=\frac{\left(2n-4\right)+5}{n-2}=\frac{2\left(n-2\right)}{n-2}+\frac{5}{n-2}=2+\frac{5}{n-2}\)
Để \(\left(2n+1\right)⋮\left(n-2\right)\)thì \(5⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n - 2 | 1 | -1 | 5 | -5 |
n | 1 | 3 | -3 | 7 |
Vậy \(n\in\left\{-3;1;3;7\right\}\)
2n\(+\)1\(⋮\)n-2\(\Rightarrow\)2.\((\)n-2\()\)\(+\)5\(⋮\)n-2
\(\Rightarrow\)5\(⋮\)n-2 \((\)n \(\in\)\(ℤ\)\()\)
\(\Rightarrow\)n-2\(\in\)Ư\((\)5\()\)= tập hợp -5,5,-1,1
\(\Rightarrow\)n\(\in\)tập hợp -3,7,1,3
Vậy..
2n + 1 chia hết cho n - 2
Ta có : 2n - 1 = ( 2n - 4 ) + 3
Mà 2n - 1 chia hết cho n - 2
=> ( 2n - 4 ) + 3 chia hết cho n - 2
vì 2n - 4 chia hết cho n - 2
=> 3 chia hết cho n - 2
=> n - 2 thuộc Ư(3) = { 1 ; -1 ; 3 ; -3 }
Ta có bảng sau :
n-2 | 1 | -1 | 3 | -3 |
n | 3 ( TM ) | 1 ( TM ) | 5 ( TM ) | -1 ( TM ) |
vậy n thuộc { 3 ; 1 ; 5 ; -1 }
Tìm số nguyên n, biết rằng:
2n + 1 chia hết cho n - 2
Ta có \(2n+1⋮n-2\)
\(\Rightarrow2.\left(n-2\right)+3⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\in\text{Ư}\left(3\right)\)
\(\Rightarrow n-2\in\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)
1. Cho n là số tự nhiên . vhuwngs minh các số sau là nguyên tố cùng nhau
a)7n+10 và 5n+7
b)2n+2 và 4n+8
2.Tìm số tự nhiên n biết
a)6+2n chia hết cho n
b)6+2n chia hết cho n+2
giúp minh nha mai nộp rồi !
Gọi d là UCLN của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d , 5n + 7 chia hết cho d
<=> 5(7n + 10) chia hết cho d , 7(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d , 35n + 49 chia hết cho d
<=> (35n + 50) - (35n + 49) chia hết cho d
<=> 35n + 50 - 35n - 49 chia hết cho d
<=> 1 chia hết cho d
=> d là ư(1)
=> d = 1
Vậy đpcm
Tìm số tự nhiên n để phân số có giá trị là 1 số nguyên
*Gợi ý : n + 10 chia hết cho 2n - 8 ; n + 10 chia hết cho n - 4
Tìm số nguyên n sao cho a,2n-7 chia hết cho n+3 b, n+5 chia hết cho 2n-1 c, n-8 chia hết cho n+1
a/ Ta có: 2n-7=2n+6-13=2(n+3)-13
Nhận thấy, 2(n+3) chia hết cho n+3 với mọi n
=> Để 2n-7 chia hết cho n+3 => 13 chia hết cho n+3
=> n+3=(-13,-1,1,13)
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
b, n+5 chia hết cho 2n-1 => 2(n+5) chia hết cho 2n-1 => 2n+10 chia hết cho 2n-1
2n-1 chia hết cho 2n-1
=>2n+10-(2n-1) chia hết cho 2n-1
=>2n+10-2n+1 chia hết cho 2n-1
=>11 chia hết cho 2n-1
=>2n-1 E Ư(11)={1;-1;11;-11}
=>n E {1;0;6;-5}
a) 2n-7 chia hết cho n+3
=> 2n+6-13 chia hết cho n+3
=> 2(n+3)-13 chia hết cho n+3
=> 2(n+3) chia hết cho n+3 ; 13 chia hết cho n+3
=> n+3 thuộc Ư(13)={-1,-13,1,13}
Ta có bảng :
n+3 | -1 | -13 | 1 | 13 |
n | -4 | -16 | -2 | 10 |
vậy n={-18,-16,-4,10}
b) Như ST làm
c) n-8 chia hết cho n+1
=> n+1-9 chia hết cho n+1
=> n+1 chia hết cho n+1 ; 9 chia hết cho n+1
=> n+1 thuộc Ư(9)={-1,-3,-9,1,3,9}
=> n={-2,-4,-10,0,2,8}