Cho tam giac ABC vuông cân tại A, điểm D thuộc cạnh AC sao cho AC=3AD. Gọi H là chân đường vuông góc kẻ từ trung điểm M của BC đến BD.Chứng minh rằng HC là tia phân giác của góc MHD.
Giúp mình với nha!
Cho tam giac ABC vuông cân tại A, điểm D thuộc cạnh AC sao cho AC=3AD. Gọi H là chân đường vuông góc kẻ từ trung điểm M của BC đến BD.Chứng minh rằng HC là tia phân giác của góc MHD.
cho tam giác ABC vuông tại A có AB=3cm ac=4cm
a) tính BC.so sánh các góc của tam giác ABC
b) Từ A kẻ đường vuông góc với BC của tam giac ABC.Trên tia BH lấy điểm D sao cho H là trung điểm của đoạn thẳng BD.Chứng minh tam giác ABD cân tại A
c) trên tia AH lấy M sao cho H là trung điểm của AM.Chứng minh tam giác ABM cân
Giúp mik với cần gấp
Ap dụng định lý py ta go ta có
\(BC^2=AB^2+AC^2\\
BC^2=9+16=25\\
BC=5\left(cm\right)\)
xét tg ABH và tg ADH
g AHB = g AHD (=90o)
AH chung
BH = DH (gt)
=> 2 tg = nhau (c-g-c)
=> AB = AD (2 cạnh t/ư)
=> tg ABD cân tại A(đpcm)
Cho tam giác ABC cân tại A. Lấy điểm M thuộc AB, điểm N thuộc tia đối của tia CA sao cho BM=CN. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại điểm O. Gọi H là giao điểm của AO và BC, kẻ HD vuông góc với AC(D thuộc AC)
a. Chứng minh rằng: Tam giác MON cân
b. Biết AH= 5 cm, HD=3 cm. Tính độ dài HC
c. Gọi F là giao điểm của MN và BC. Chứng minh rằng OF vuông góc với MN
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
bài 1:cho tam giac ABC có 3 góc nhọn,đường cao AH,Trên nửa mặt phẳng là đường thẳng AC có chứa điểm B,kẻ tia Cx//AB.Trên tia Cx lấy điểm d sao cho CD=AB.Kẻ DK vuông góc BC(K thuộc BC).Gọi O la trung điểm cua BC.Chứng minh
a.AH=DK b.3 điểm A,0,D thẳng hàng
c.AC//BD
bài2:cho tam giác ABC với độ dai 3 cạnh AB=3cm,BC=5cm,AC=4cm
a.Tam giắc ABC la tam giác gì:Vì sao
b.Trên cạnh BC lấy điểm D sao cho BA =BD.Từ D vẽ Dx vuông góc với BC(Dx cắt AC tại H).c/m:BH la tia phân giác của góc BAc
c.Vẽ trung tuyến AM.C/m tam giác ABC cân
Bài 3:Cho tam giac ABC vuông tại A,phân giác BD.Kẻ DE vuông góc với BC(E thược BC).Gọi F là gaio điểm cua BA và ED.C/m rằng
a.AB=BE
b.Tam giac CDF là tam giắc cân
c.AE//CF
Bài 4:Cho tam giac ABC(AB=Ac),kẻ đường cao AH(H thuộc BC)
a.C/m rằng HB=HC và góc BAH = góc CAH
b.Từ h kẻ HD vuông góc với AB(D thuộc AB),kẻ HE vuông góc AC(E thuộc AC)
c.Giả sử AB = 10cm,BC = 16cm.Hãy tính độ dài AH
trắc nghiệm
ai có thời gian lam cho e với
Bài 1 ( bạn tự vẽ hình nha)
a, Vì AB // Cx nên góc ABC= góc BCD( hai góc so le trong)
Xét tam giác ABH vuông tại h và tam giác DCK vuông tại k có:
AB=CD( gt)
góc ABH= gócDCK
Nên tam giác ABH= tam giác DCK
nên AH=DK(đpcm)
b, Xét tam giác ABC và tam giác DCB có:
AB=CD( gt)
góc ABC= góc BCD (cmt)
BC chung
Nên tam giác ABC= tam giác DCB
nên góc ACB = góc CBD
mà góc ACB và góc CBD là 2 góc so le trong
Nên AC // BD ( đpcm)
c, Vì O là trung điểm của BC
Nên AO là đường trung tuyến (1)
Vì O là trung điiểm của BC
Nên DO là đường trung tuyến của BC (2)
Từ (1) và (2) ta được A, O, D thẳng hàng
bài 1:cho tam giac ABC có 3 góc nhọn,đường cao AH,Trên nửa mặt phẳng là đường thẳng AC có chứa điểm B,kẻ tia Cx//AB.Trên tia Cx lấy điểm d sao cho CD=AB.Kẻ DK vuông góc BC(K thuộc BC).Gọi O la trung điểm cua BC.Chứng minh
a.AH=DK b.3 điểm A,0,D thẳng hàng
c.AC//BD
bài2:cho tam giác ABC với độ dai 3 cạnh AB=3cm,BC=5cm,AC=4cm
a.Tam giắc ABC la tam giác gì:Vì sao
b.Trên cạnh BC lấy điểm D sao cho BA =BD.Từ D vẽ Dx vuông góc với BC(Dx cắt AC tại H).c/m:BH la tia phân giác của góc BAc
c.Vẽ trung tuyến AM.C/m tam giác ABC cân
Bài 3:Cho tam giac ABC vuông tại A,phân giác BD.Kẻ DE vuông góc với BC(E thược BC).Gọi F là gaio điểm cua BA và ED.C/m rằng
a.AB=BE
b.Tam giac CDF là tam giắc cân
c.AE//CF
Bài 4:Cho tam giac ABC(AB=Ac),kẻ đường cao AH(H thuộc BC)
a.C/m rằng HB=HC và góc BAH = góc CAH
b.Từ h kẻ HD vuông góc với AB(D thuộc AB),kẻ HE vuông góc AC(E thuộc AC)
c.Giả sử AB = 10cm,BC = 16cm.Hãy tính độ dài AH
trắc nghiệm
ai có thời gian lam cho mik với
BÀI 2:
bạn tự vẽ hình nhé
a, Xét tam giác ABC có AB2 +AC2= 32 + 42=25
BC2=52 = 25
Do 25 = 25 nên AB2 +AC2 =BC2 => Tam giác ABC vuông tại A ( Định lý pi-ta-go đảo)
b, Xét tam giác ABH vuông tại A và tam giác DBH vuông tại D
Có BH là cạnh chung (cạnh huyền )
BA=BD(gt)(cạnh góc vuông)
=>tam giác ABH= tam giác DBH(CẠNH HUYỀN- CẠNH GÓC VUÔNG)
=>góc ABH = góc DBH ( 2 góc tương ứng)
mà tia BH nằm giữa 2 tia BA và BC
=>BH là tia phân giác của góc ABC
1)Tam giác ABC vuông cân tại A, đường trung tuyến AM. Gọi D là điểm thuộc đoạn thẳng MC. Gọi H là chân đường vuông góc kẻ từ B đến AD. Gọi I, K lần lượt là chân đường vuông góc kẻ từ M đến AD và BH. Chứng minh HM là tia phân giác của góc BHD.
2)Tam giác ABC có I là giao điểm các tia phân giác của các góc B và C. Gọi d là giao điểm của AI và BC. Kẻ IH vuông góc với BC( H thuộc BC). Chứng minh rằng góc BIH= góc CID.
3) Cho tam giác ABC có góc C=30 độ. Tia phân giác của góc B và đường phân giác của góc ngoài tại A cắt nhau ở E. Tính số đo góc BCE.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Bài làm
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau:
5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2.
Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7
Ta làm như sau: 6 - 7
Không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5.
Vậy 8,6 - 2,7 = 5,9
Cho tam giác ABC cân tại A, M thuộc AB, N thuộc tia đối của CA sao cho BM=CN. Đường thẳng vuông góc với AB kẻ từ B và đường thằng vuông góc với AC kẻ từ C cắt nhau tại O. Gọi H là giao điểm của AO và BC. Kẻ HD vuông góc với AC(D thuộc AC).
a. CMR: Tam giác MON cân
b. Biết HA=5cm, HD=3cm. Tính HC
c. Gọi E là giao điểm của Mn và BC. CMR: OE vuông góc với MN
(Mình cần gấp lắm, giúp mình nha)
Câu a
Xét tam giác vuông AB0 và tam giác vuông ACO
AB=AC( gt )
AO cạnh chung
=> Tam giác ABO = Tam giác ACO (ch-cgv)
=>OB=OC( 2 cạnh tương ứng )
Xét tam giác vuông MBO và tam giác vuông NCO
MB=NC ( gt)
OB=OC (cmt)
=>Tam giác MBO = Tam giác NCO( 2 cgv )
=>OM=ON
=>tam giác NOM cân tại 0
cTa có tam giác NOM cân tại O
Lại có : HOB^=HOC^ (cn câu a)
=.HOM^+MOB^=HON^+NOC^
Mà MOB^=NOC^ (cm câu a)
=>HOM^=HON^
Xét tam giác MEO và tam giác NEO
EO cạnh chung
EOM^=EON^ (cmt)
OM=ON ( cm câu a)
=>Tam giác EOM=tam giác EON ( c-g-c )
=> OEN^=OEM^
Mà OEN^+OEM^=180* (góc bẹt)
=>OEM^=OEN^=180*/2=90* ( đpcm )
- câu b làm thế nào vậy ạ?
1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.
2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.
3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.
4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.
5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.