Tìm x:
10075 : x = 5
Tìm x biết
5/1.7+5/7.13+5/13.19+...+5/x.(x+6)=10075/12096
Đặt \(A=\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+....+\frac{5}{x.\left(x+6\right)}\)
\(\Rightarrow A=\frac{5}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{x.\left(x+6\right)}\right)\)
\(\Rightarrow A=\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+....+\frac{1}{x}-\frac{1}{x+6}\right)\)
\(\Rightarrow A=\frac{5}{6}.\left(1-\frac{1}{x+6}\right)\)
\(\Rightarrow\frac{5}{6}.\frac{x+5}{x+6}=\frac{10075}{12096}\)
Làm nốt nha
\(\frac{5}{1.7}+\frac{5}{7.13}+...+\frac{5}{x.\left(x+6\right)}=\frac{10075}{12096}\)
\(\Rightarrow\frac{5}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{x.\left(x+6\right)}\right)=\frac{10075}{12096}\)
\(\Rightarrow\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+6}\right)=\frac{10075}{12096}\)
\(\Rightarrow\frac{5}{6}.\left(1-\frac{1}{x+6}\right)=\frac{10075}{12096}\)
\(\Rightarrow1-\frac{1}{x+6}=\frac{10075}{12096}:\frac{5}{6}\)
\(\Rightarrow1-\frac{1}{x+6}=\frac{10075}{12096}.\frac{6}{5}\)
\(\Rightarrow1-\frac{1}{x+6}=\frac{2015}{2016}\)
\(\Rightarrow\frac{1}{x+6}=1-\frac{2015}{2016}\)
\(\Rightarrow\frac{1}{x+6}=\frac{1}{2016}\)
\(\Rightarrow x+6=2016\)
\(\Rightarrow x=2016-6\)
\(\Rightarrow x=2010\)
Chúc bạn học tốt !!!
1.7 5 + 7.13 5 + ... + x. x + 6 5 = 12096 10075 ⇒ 6 5 . 1.7 6 + 7.13 6 + ... + x. x + 6 6 = 12096 10075 ⇒ 6 5 . 1 − 7 1 + 7 1 − 13 1 + ... + x 1 − x + 6 1 = 12096 10075 ⇒ 6 5 . 1 − x + 6 1 = 12096 10075 ⇒1 − x + 6 1 = 12096 10075 : 6 5 ⇒1 − x + 6 1 = 12096 10075 . 5 6 ⇒1 − x + 6 1 = 2016 2015 ⇒ x + 6 1 = 1 − 2016 2015 ⇒ x + 6 1 = 2016 1 ⇒x + 6 = 2016 ⇒x = 2016 − 6 ⇒x = 2010\(1.7 5 + 7.13 5 + ... + x. x + 6 5 = 12096 10075 ⇒ 6 5 . 1.7 6 + 7.13 6 + ... + x. x + 6 6 = 12096 10075 ⇒ 6 5 . 1 − 7 1 + 7 1 − 13 1 + ... + x 1 − x + 6 1 = 12096 10075 ⇒ 6 5 . 1 − x + 6 1 = 12096 10075 ⇒1 − x + 6 1 = 12096 10075 : 6 5 ⇒1 − x + 6 1 = 12096 10075 . 5 6 ⇒1 − x + 6 1 = 2016 2015 ⇒ x + 6 1 = 1 − 2016 2015 ⇒ x + 6 1 = 2016 1 ⇒x + 6 = 2016 ⇒x = 2016 − 6 ⇒x = 2010\)
tích của hai só là 10075 hỏi nếu tăng thừ số thứ 2 lên 5 lần và giữ nguyên thừa số thứ nhất thì tích mới là bao nhiêu
tích cảu 2 số là 10075 hỏi nếu tăng thừa số thứ 2 lên 5 thì lần và giử nguyrn thừa sooso thứ nhất thì tích mới là bao nhiêu
ai bít thì trả lời giúp tớ với đang gấp quá trời nè 3;;
Bài 1: Tìm x, biết 5 3.5 5 .2 2 3 2 2 x
Bài 2: Tìm x, biết: (7x-11)3 = 25.52 + 200
Bài 3: Tìm x biết : 2 15 2 15 x x 5 3
Bài 4: Tìm số tự nhiên x biết 8.6 + 288 : (x - 3)2 = 50
Bài 5: Tìm x: 22x – 1 + 6.28 = 14.28
Bài 6: Tìm số tự nhiên x biết:
a) 23x + 52x = 2(52 + 23) – 33 b) 260 : (x + 4) = 5(23 + 5) – 3(32 + 22)
c) (3x – 4)10 – 3 = 1021 d) (x2 + 4) (x + 2)
Bài 7: Tìm số tự nhiên x, biết: 5 .5 .5 1000...0: 2 x x x 1 2 18
Bài 8: Tìm số tự nhiên x biết: 2x 2x1 2x2 ... 2x2015 22019 8
Bài 9: Tìm x N biết :
a) 13 + 23 + 33 + ...+ 103 = ( x +1)2; b) 1 + 3 + 5 + ...+ 99 = (x -2)2
Bài 10: Tìm các số tự nhiên x, y sao cho (2x + 1)(y – 5) = 12
DẠNG 3: SO SÁNH BIỂU THỨC, LUỸ THỪA
Bài 11: So sánh hai tích sau mà không tính cụ thể giá trị của chúng:
a) A 123.123và B 124.122; b) A 987.984và B 986.985.
c) C = 345.350 và D = 348.353 d) P = 75.36 + 23 và Q = 36.77 – 64
e) E = 35.56 + 17 và F = 34.57 – 14
Bài 12. Không tính kết quả của biểu thức, hãy so sánh
a) A 2019.2021 và B 20202 b)
2021
2022
10 1
10 1
M
và
2022
2023
10 1
10 1
N
.
Bài 13: Cho A = 1 + 2012 + 20122 + 20123 + 20124 + … + 201271 + 201272 và
B = 201273 - 1. So sánh A và B.
Bài 14: Cho D 1 2 ... 22021. Chứng minh D 22022
Bài 15: Cho E = 6 +62 +...+ 62020. So sánh 5E + 6 với 361011
Bài 16: Cho S = 2.1+2.3 +2.32+2.32020. So sánh S + 2 với 4.91010
Bài 17: Cho S = 5.1+5.4 +5.42+5.42021 . So sánh 3S + 5 với 80. 16 1010
* Các bài toán về so sánh luỹ thừa
Loại 1: Biến đổi về cùng cơ số hoặc số mũ
Bài 1: Hãy so sánh:
a. 1619 và 825 b. 2711 và 818 . c) 1619 và 825 d) 6255 và 1257 .
Bài 2: Hãy so sánh:
a. 1287 và 424 b. 536 và 1124 c. 3260 và 8150 d. 3500 và 7300 .
PBT CLB Toán 6 Cô Yến -TNT
Bài 3: Hãy so sánh:
a) 3210 và 2350 b) 231 và 321 c) 430 và 3 24 . . 10
Bài 4: Hãy so sánh:
a) 32n và 23n * n N b) 5300 và 3500 .
Bài 5: Hãy so sánh:
a) 32 2 n n và 9n12 b) 256n và 16n5 (với n N )
Loại 2: Đưa về một tích trong đó có thừa số giống nhau
Bài 1: Hãy so sánh:
a) 202303 và 303202 . b) 2115 và 27 49 5 8 . . c)3.275 và 2435 .
Bài 2: Hãy so sánh:
a) 2015 2015 2015 2014 và 2015 2015 2016 2015 . b) 2015 2015 10 9 và 201610.
Bài 3: Hãy so sánh:
a) A 72 72 45 44 và B 72 72 44 43 . b) 3775 và 7150 .
Bài 4: Hãy so sánh:
a) 523 và 6 5 . 22 b) 7 2 . 13 và 216 c) 1512 và 81 125 3 5 . .
Bài 5: Hãy so sánh 9920 và 999910 .
Loại 3: So sánh thông qua một lũy thừa trung gian
Bài 1: Hãy so sánh 2 3 4 30 30 30 và 3 24 . 10 .
Bài 2: Hãy so sánh:
a) 2225 và 3151 b) 19920 và 200315 c) 291 và 536.
Bài 3: Hãy so sánh:
a) 9920 và 9 11 10 30 . b) 96142 và 100 23 . 93 .
Bài 4: Hãy so sánh:
a) 10750 và 7375 b) 3339 và 1121.
Bài 5: Hãy so sánh:
a) A 123456789 và B 567891234 . b) 111979 và 371320 .
Loại 4: So sánh thông qua hai lũy thừa trung gian
Bài 1: Hãy so sánh
a) 1720 và 3115 b) 19920 và 10024 c) 3111 và 1714 .
Bài 2: Hãy so sánh
a) 111979 và 371321 b) 10750 và 5175 c) 3201 và 6119 .
Bài 3: Chứng minh rằng: a) 2 5 1995 863 . b) 5 2 5 27 63 28 .
1. Tìm 5 số tự nhiên lẻ liên tiếp có tổng bằng 10075
2. tìm số tự nhiên n sao cho:
1+1+2+2^2+2^3+...+2^n=2^101
\(2)1+1+2+2^2+\cdot\cdot\cdot+2^n=2^{101}\)
\(\Rightarrow1+2+2^2+\cdot\cdot\cdot+2^n=2^{101}-1\)
\(\Rightarrow2+2^2+2^3+\cdot\cdot\cdot+2^{n+1}=2^{102}-2\)
\(\Rightarrow\left(2+2^2+\cdot\cdot\cdot+2^{n+1}\right)-\left(1+2+\cdot\cdot\cdot+2^n\right)=\left(2^{102}-2\right)-\left(2^{101}-1\right)\)
\(\Rightarrow2^{n+1}-1=2^{101}-1\)
\(\Rightarrow2^{n+1}=2^{101}\)
\(\Rightarrow n+1=101\)
\(\Rightarrow n=100\)
\(1)a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)+\left(a+8\right)=10075(a⋮̸2)\)
\(\Rightarrow5a+\left(2+4+6+8\right)=10075\)
\(\Rightarrow5a=10075-20\)
\(\Rightarrow5a=10055\)
\(\Rightarrow a=2011\)
tìm X
( X + 5 )3 = ( X + 5 )2
\(\left(x+5\right)^3=\left(x+5\right)^2\)
`(x+5)^3 -(x+5)^2 =0`
`(x+5)^2 (x+5-1)=0`
`(x+5)^2 (x+4)=0`
\(=>\left[{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)
a. Tìm x để biểu thức A=1000-|x+5| đạt giá trị lớn nhất
b. Tìm x để biểu thức B=|x-3|+5 đạt giá trị nhỏ nhất
a. A=1000-|x+5| < 1000
=> GTLN của A là 1000
<=> x + 5 = 0
<=> x = -5
b. B = |x-3| + 5 > 5
=> GTNN của B là 5
<=> x - 3 = 0
<=> x = 3
a) A = 1000 - |x + 5| \(\le\)1000
Vậy GTLN của A = 1000 khi
|x + 5| = 0 => x= -5
b)B = |x - 3| + 5 \(\ge\) 5
Vậy GTNN của B = 5 khi
|x - 3| = 0 => x = 3
tìm x
1/5 - 1/5 : x =3/5
4/5 + x . 2/3
\(a,\dfrac{1}{5}-\dfrac{1}{5}:x=\dfrac{3}{5}\\ \Rightarrow\dfrac{1}{5}:x=\dfrac{1}{5}-\dfrac{3}{5}\\ \Rightarrow\dfrac{1}{5}:x=\dfrac{-2}{5}\\ \Rightarrow x=\dfrac{1}{5}:\dfrac{-2}{5}\\ \Rightarrow x=\dfrac{-1}{2}\)
câu b thiếu đề
tìm x biết : x+9/2=5-x/5
<=> x + x/5 = 5 - 9/2
<=> 6/5x = 1/2
<=> x = 5/12
\(x+\frac{9}{2}=5-\frac{x}{5}\)
\(x+\frac{x}{5}=5-\frac{9}{2}\)
\(x\left(1+\frac{1}{5}\right)=\frac{10}{2}-\frac{9}{2}\)
\(x\cdot\left(\frac{5}{5}+\frac{1}{5}\right)=\frac{1}{2}\)
\(x\cdot\frac{6}{5}=\frac{1}{2}\)
\(x=\frac{1}{2}:\frac{6}{5}\)
\(x=\frac{5}{12}\)
\(x+\frac{9}{2}=5-\frac{x}{5}\)
\(x=5-\frac{9}{2}-\frac{x}{5}\)
\(x=\frac{1}{2}-\frac{x}{5}\)
\(\frac{1}{2}=x-\frac{x}{5}=\frac{4x}{5}\)
\(\frac{5}{10}=\frac{8x}{10}\)
\(=>x=\frac{5}{8}\)