Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đăng Hiếu
Xem chi tiết
Trần Đăng Hiếu
18 tháng 10 2015 lúc 15:33

Đây là dạng toán quy nạp nha

Trần Đăng Hiếu
18 tháng 10 2015 lúc 15:34

Đây là dạng toán quy nạp nha

Đoàn Sĩ Linh
Xem chi tiết
Đoàn Sĩ Linh
20 tháng 3 2016 lúc 20:30

nhanh giúp mình

phùng tấn dũng
Xem chi tiết
phùng tấn dũng
21 tháng 3 2018 lúc 20:39

giúp mình nhanh lên các bạn ơi

Nhung Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 15:31

A=1/4^2+1/6^2+...+1/(2n)^2

=1/4(1/2^2+1/3^2+...+1/n^2)

=>A<1/4(1-1/2+1/2-1/3+...+1/n-1-1/n)

=>A<1/4(1-1/n)<1/4

Hồ huynh ngân
Xem chi tiết
Hồ huynh ngân
Xem chi tiết
Trần Tiến Đức
Xem chi tiết
Nguyễn Thị Ngọc Anh
Xem chi tiết
giang ho dai ca
12 tháng 8 2015 lúc 16:38

5A = 1/5 + 2/5^2 +3/5^3 +...+ 11/5^11

=> 4A= 1/5+1/5^2 +1/5^3 +...+1/5^11 - 11/5^12

=> 20A = 1+1/5+1/5^2+...+1/5^10 - 11/5^11

=> 16A = 1-1/5^11+11/5^12-11/5^11

Vì 1-1/5^11  <  1 ; 11/5^12 -11/5^11 < 0

=> 16A < 1

=> A < 1/16

 

 

Nguyễn Duy Long
Xem chi tiết
alibaba nguyễn
30 tháng 8 2017 lúc 13:40

Đặt:

\(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}\)

\(\Leftrightarrow2A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{97}+\sqrt{99}}\)

\(>\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{99}+\sqrt{101}}\)

\(=\frac{1}{2}.\left(\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{101}-\sqrt{99}\right)\)

\(=\frac{1}{2}.\left(\sqrt{101}-\sqrt{1}\right)>\frac{1}{2}.\left(\sqrt{100}-\sqrt{1}\right)\)

\(=\frac{9}{2}\)

\(\Rightarrow A>\frac{9}{4}\)

alibaba nguyễn
30 tháng 8 2017 lúc 13:33

Câu 2/ Ta có:

\(n^{n+1}>\left(n+1\right)^n\)

\(\Leftrightarrow n>\left(1+\frac{1}{n}\right)^n\left(1\right)\)

Giờ ta chứng minh cái (1) đúng với mọi \(n\ge3\)

Với \(n=3\) thì dễ thấy (1) đúng.

Giả sử (1) đúng đến \(n=k\) hay

\(k>\left(1+\frac{1}{k}\right)^k\)

Ta cần chứng minh (1) đúng với \(n=k+1\)hay \(k+1>\left(1+\frac{1}{k+1}\right)^{k+1}\)

Ta có: \(\left(1+\frac{1}{k+1}\right)^{k+1}< \left(1+\frac{1}{k}\right)^{k+1}=\left(1+\frac{1}{k}\right)^k.\left(1+\frac{1}{k}\right)\)

\(< k\left(1+\frac{1}{k}\right)=k+1\)

Vậy có ĐPCM

Songo Han
31 tháng 8 2017 lúc 15:25

bằng 122223