cho tam giác nhọn ABC có các đường cao BD, CE cắt nhau tại H. a) CMR: ∠HBC=∠HED b) Gọi I là trung điểm BC. Đường thẳng vuông góc với HI tại H cắt AB tại M. Gọi N là điểm đối xứng của A qua H. CMR: MN⊥BD
Cho tam giác ABC có các đường cao BD,CE cắt nhau tại H. CMR:
A) góc HBC= góc HED
B) Gọi I là trung điểm của BC. Đường thẳng vuông góc với HI tại H. CM MH vuông góc BD
Cho tam giác ABC có các đường cao BD,CE cắt nhau tại H. CMR:
A) góc HBC= góc HED
B) Gọi I là trung điểm của BC. Đường thẳng vuông góc với HI tại H. CM MH vuông góc BD
a, chứng minh tam giác EHB và tam giác DHC đồng dạng theo trường hợp G-G
chứng minh được HE/HD=HB/HC
xét tam giác EHD và tam giác BHC có: 2 cạnh tỉ lệ trên= nhau và góc EHD = góc BHC( đđ)
suy ra 2 tam giác đồng dạng
suy ra 2 góc cần cm bằng nhau
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm của BC.
a)Chứng minh tam giác ADB đồng dạng tam giác AEC
Xét tam giác ABD và tam giác ACE có
góc ABD= góc AEC (=90 độ)
góc A: chung
=> tam giác ABD đồng dạng tam giác AEC (g.g)
b) Cm :HE.HC=HD.HB
Xét tam giác HEB và tam giác HDC có
góc HEB= góc HDC (=90 độ)
góc EHB= góc DHC ( đối đỉnh)
=>tam giácHEB đồng dạng tam giác HDC(g.g)
=>HE/HD=HB/HC
<=> HE.HC= HD.HB
c) Cm: H,M,K thẳng hàng
Có BD vuông góc AC
CK vuông góc AC
=> BD song song CK hay BH song song CK
Có CE vuông góc AB
BK vuông góc AB
=> CE song song BK hay CH song song BK
Tứ giác BHCK có BH song song CK
CH song song BK
=> BHCK là hbh ( dhnb)
Mà M là trung điểm của đg chéo BC
=> M cũng là trung điểm của đg chéo HK
=> H,M,K thẳng hàng
cho tam giác ABC nhọn, các đường cao BD, CE cắt nhau tại H. Cm:
a) tam giác DAB đồng dạng tam giác EAC
b) tam giác HBE đồng dạng tam giác HCD
c) tam giác HBC đồng dạng tam giác HED
d) AB.AE=AC.AD
e) BH.BD+CH.CE=BC^2
bạn tự làm câu a,b,c nhá.
d,Xét tam giác ABD và tam giác ACE có:
Chung góc A
góc ADB=góc AEC(=90 độ)
suy ra tam giác ABC đồng dạng tam giác ACE(g.g)
suy ra
AB/AC=AD/AE(đ/n 2 tam giác đồng dạng)
suy ra AB.AE=AC.AD(dieu phai cm)
e.Kẻ AH vuông góc với BC tại I
Xét BIH và BCD có:(mk viết tắt Tam giác nha)
Chung góc B
góc I=góc D(=90 độ)
suy ra BHI đồng dạng BCD(g.g)
suy ra HB/BC=BI/BD(đ/n 2 tam giác đồng dạng)
suy ra BH.BD=BC.BI (1)
tương tự xét CHI đồng dạng CBE(chung goc C;goc I=gocE=90 độ)
suy ra CH.CE=BC.IC (2)
từ (1) và (2) suy raBH.BD+CH.CE=BC.BI+BC.IC
=BC.(BI+IC)
=BC.BC
=BC2
Vậy BH.BD+CH.CE=BC2.
Cho tam giác nhọn ABC, các đường cao BD và CE cắt nhau ở H. Chứng minh rằng:
a) Tam giác EHB đồng dạng tam giác DHC
b) Tam giác HED đồng dạng tam giác HBC
c) Tam giác ADE đồng dạng tam giác ABC
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CEcắt nhau tại H. Chứng minh:
a) HE.HC=HB.HD
b) tam giác HED đồng dạng với tam giác HBC
a) xét tam giác BHE và tam giác CHD b)
góc BHE =góc CHD (đối đỉnh)
góc E= góc D=90 độ
Vậy tam giác BHE ~ tam giác CHD(g_g)
Suy ra:HB.HD=HE.HC
cho tam giác ABC nhọn , các đường cao BD và CE cắt nhau ở H. Chứng minh rằng:
a) tam giác ADB đồng dạng với tam giác AEC
b) HB.HD=HC.HE
c)tam giác HBC đòng dạng với tam giác HED
d) tam giác vuông ADE= tam giác vuông ABC
a) Xét \(\Delta ADB\) và \(\Delta AEC\) co:
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(\widehat{A}\) CHUNG
Suy ra: \(\Delta ADB~\Delta AEC\)
b) Xét \(\Delta EHB\) và \(\Delta DHC\) có:
\(\widehat{HEB}=\widehat{HDC}=90^0\)
\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
suy ra: \(\Delta EHB~\Delta DHC\)
\(\Rightarrow\)\(\frac{EH}{DH}=\frac{HB}{HC}\)
\(\Rightarrow\)\(HB.DH=HC.HE\)
cho tam giác ABC, các đường cao BD và CE cắt nhau tại H. chúng minh rằng:
a) tam giác EHB đồng dạng tam giác DHC
b)tam giác HED đồng dạng tam giác HBC
c) tam giác ADE đồngb dạng tam giác ABC
a)
Xét tam giác EHB và tam giác DHC có :
\(\widehat{EHB}=\widehat{DHC}\left(đđ\right)\)
\(\widehat{HEB}=\widehat{HDC}\)
\(\Rightarrow\) tam giác EHB đồng dạng với tam giác DHC (g-g)
b)
Do tam giác EHB đồng dạng với tam giác DHC
\(\Rightarrow\frac{EH}{DH}=\frac{HB}{HC}\)
Xét tam giác HED và tam giác HBC có :
\(\frac{EH}{DH}=\frac{HB}{HC}\)
\(\widehat{EHD}=\widehat{BHC}\)
\(\Rightarrow\) tam giác HED đồng dạng với tam giác HBC (c-g-c)
Cho tam giác ABC nhọn , đường cao BD và CE cắt nhau tại H . Khi tam giác ABC đều , tính tỉ số diện tích tam giác HED và tam giác ABC