Cho tam giác ABC nhọn có AB<AC. Gọi BD, CE là đường cao, H là trực tâm của tam giác ABC, I là trung điểm của BC. a) C/m AD.AC=AB.AE và góc ADE = góc ABC b) Qua H kẻ đường thẳng vuông góc vói IH cắt cạnh AB tại M, cắt cạnh AC tại N. C/m H là trung điểm của MN
Cho tam giác ABC nhọn có AB<AC. Gọi BD, CE là đường cao, H là trực tâm của tam giác ABC, I là trung điểm của BC.
a) C/m AD.AC=AB.AE và góc ADE = góc ABC
b) Qua H kẻ đường thẳng vuông góc vói IH cắt cạnh AB tại M, cắt cạnh AC tại N. C/m H là trung điểm của MN
Cho tam giác ABC nhọn, có 3 đường cao AD, BE, CF cắt nhau tại H. Gọi M, N là
trung điểm của BC và AH. Gọi I là giao điểm của MN và EF,đường phân giác góc A cắt MN tại K.
a)CMR: MN vuông góc với EF
b)CMR: NHI = HMI
c) CMR: HK là phân giác góc EHC.
GIÚP MIK VỚI :(((
Bài 14: Cho∆ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh: BK ⊥AB và CK ⊥AC.
c) Gọi I là điểm đối xứng của H qua BC. CMR: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G, Tam giác ABC có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
Bài 14: Cho △ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
Cho tam giác ABC nhọn, có hai đường cao BM và CN cắt nhau tại H.
a) CMR: AM. AC = AN. AB
b) Chứng minh hai tam giác AMN và ABC đồng dạng
c) Gọi P là giao điểm của AH với BC. CMR: PH là phân giác của góc MPN
d) Đường thẳng MN cắt BC tại D. CMR: DN. PM = DM. PN
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.