CMR: (a+b)^2 lớn hơn hoặc bằng 4ab
Cho a,b > 0
CMR : a+b lớn hơn hoặc bằng \(\frac{4ab}{1+ab}\)
\(\frac{4ab}{1+ab}\le\frac{4ab}{2\sqrt{ab}}=2\sqrt{ab}\le a+b\)
Dấu "=" xảy ra khi a=b=1
Chứng minh bất đẳng thức :
(a+b )2 lớn hơn hoặc bằng 4ab
\(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)
\(\left(a+b\right)^2\ge4ab\)
<=> \(a^2+2ab+b^2\ge4ab\)
<=> \(a^2+2ab+b^2-4ab\ge0\)
<=> \(a^2-2ab+b^2\ge0\)
<=> \(\left(a-b\right)^2\ge0\) luôn đúng
Dấu "=" xảy ra <=> a=b
chứng minh:
(a+b)2 lớn hơn hoặc bằng 4ab
dấu bằng xảy ra khi nào
Cho a,b lớn hơn hoặc bằng 2. CMR ab lớn hơn a+b
Bài này `a=b=2=>ab=a+b` nhé.=>Phải là `ab>=a+b`
`ab>=a+b`
`<=>2ab>=2a+2b`
`<=>ab-2a+ab-2b>=0`
`<=>a(b-2)+b(a-2)>=0`
Mà `a>=2,b>=2`
`=>đpcm`
Chứng minh rằng : với mọi số a,b ta luôn có:\(a^4\)+\(b^4\)+2 lớn hơn hoặc bằng 4ab
Ta co \(a^4+b^4+2\ge2a^2b^2+2\)\(=2\left(a^2b^2+1\right)\ge2\cdot2ab\)\(=4ab\)
Dau "=" xay ra khi va chi khi a=b
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề
Ai giúp với :
a,CMR : a2+b2 luôn lớn hơn hoặc bằng 2ab
b, Áp dụng : Cho A =(a+1)(b+1) ; ab=1;a>0;b>0
CMR A luôn lớn hơn hoặc bằng 4
Các bạn giúp tớ giải bài tập nha
1. Cho a,b,c > 0
CM: a) 1 < a/b+c + b/a+c + c/a+b < 2
2. Cho x lớn hơn hoặc bằng y lớn hơn hoặc bằng 1
CMR: x + 1/x lớn hơn hoặc bằng y + 1/y
CMR : (a^2+b^2)/2 lớn hơn hoặc bằng ( a+b/2 )^2
Xét hiệu :
H = \(\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2=\frac{2.\left(a^2+b^2\right)}{4}-\frac{\left(a+b\right)^2}{4}\)
\(=\frac{2a^2+2b^2-a^2-b^2-2ab}{4}=\frac{\left(a-b\right)^2}{2^2}=\left(\frac{a-b}{2}\right)^2\ge0\)\(\forall\)a,b
Dấu " = " xảy ra khi \(\left(\frac{a-b}{2}\right)^2=0\Leftrightarrow a=b\)
\(\Rightarrow\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
Vậy ...