Cho △ DEF cân có DE= DF= 5cm, EF = 8cm. Kẻ DK ⊥ EF tại K.
a) CMR: KE= KF
b) Tính độ dài DK
Cho tam giác DEF cân có DE = DF=5cm EF =8cm. Kẻ DK vuông góc với EF
a) C/m KE =KF và tính độ dài đoạn DK
b) Trên cạnh EF lấy hai điểm A và B sao cho AE=BF<KE
C/m tam giác DAB là tam giác cân
c) Từ A kẻ AM vuông góc với DE từ B kẻ BN vuông góc với DF. C/m góc EAM = góc FBN
d) Gọi H là giao điểm của AM và BN. C/m ba điểm
D, K, H thẳng hàng
Nhanh nhé, mình đang cần gấp
a, Ta có: DK là đường cao trong tam giác cân DEF
⇒DK vừa là đường cao, vừa là đường trung tuyến trong tam giác cân
⇒KE=KF
Ta có: KE=KF=EF/2=8/2=4 (cm)
Xét Δ vuông DKF
Theo định lý Pi-ta-go, ta có:
DF²=DK²+KF²
⇒DK²=DF²-KF²
⇒DK²=5²-4²
⇒DK²=9
Cho tam giác DEF cân tại D, kẻ DK vuông góc với EF, K \(\in\) EF
a) CMR : KE = KF
b) CMR : góc EDK = góc FDK
c) Kẻ KI vuông góc với DE tại D, Kẻ KM vuông góc với DF tại M, CMR : tam giác KIM cân
d) CMR: IM // EF
Cho ∆Def vuong tại D có DE = 3cm , EF vẽ đường cao AH d k đường phân giác cy k thuộc EF được k vẽ kh vuông góc với df a tính độ dài EF chứng minh rằng tam giác DEF đồng dạng với tam giác HKF và DE.HF = DF.HK c, tính độ dài DK , KF ,KH
Đường cao AH hay DK vậy bạn?
Cho tam giác DEF có DE = DF. Lấy điểm K nằm trong tam giác sao cho KE = KF. Kẻ KP vuông góc với DE (P thuộc DE), KQ vuông góc với DF (Q thuộc DF). Chứng minh:
a) K thuộc đường trung trực của EF và PQ;
b) DK là đường trung trực của EF và PQ. Từ đó suy ra PQ//EF.
Cho tam giác cân DEF (DE = DF). Gọi N và M lần lượt là trung điểm của DE và DF, kẻ DH vuông góc với EF tại H.
1. Chứng minh HE = HF. Giả sử DE = DF = 5cm, EF = 8cm. Tính độ dài đoạn DH.
2. Chứng minh EM = FN và góc DEM = DFN
3. Gọi giao điểm của EM và FN là K. Chứng minh KE = KF.
4. Chứng minh ba điểm D, K, H thẳng hàng.
Cho tam giác DEF cân tại D. Gọi N và M lần lượt là trung điểm của DE, DF. Kẻ DH ^ EF tại H.
1/ Chứng minh HE = HF. Tính DH biết DE = 5cm, EF = 8cm.
2/ Chứng minh EM = FN;
DEMˆ=DFNˆDEM^=DFN^
3/ Gọi giao điểm của EM và FN là K. Chứng minh KE = KF.
4/ Chứng minh D, K, H thẳng hàng.
1: Ta có: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của FE
hay HE=HF
EF=8cm
nên HE=4cm
=>DH=3cm
2: Xét ΔDEM và ΔDFN có
DE=DF
\(\widehat{EDM}\) chung
DM=DN
Do đó: ΔDEM=ΔDFN
Suy ra: EM=FN
3: Xét ΔNEF và ΔMFE có
NE=MF
\(\widehat{NEF}=\widehat{MFE}\)
FE chung
Do đó:ΔNEF=ΔMFE
Suy ra: \(\widehat{KFE}=\widehat{KEF}\)
=>ΔKEF cân tại K
hay KE=KF
4: Ta có: DE=DF
nên D nằm trên đường trung trực của EF(1)
ta có: KE=KF
nên K nằm trên đường trung trực của EF(2)
ta có: HE=HF
nên H nằm trên đường trung trực của EF(3)
Từ (1), (2) và (3) suy ra D,K,H thẳng hàng
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
Cho tam giác DEF kẻ DK vuông góc vs EF( K thuộc EF)
Tính chu vi tam giác DEF
Biết DE= 10cm, DK= 8Cm và DF=15 Cm
Xét tam giác vuông EDK vuông tại K
=> ED2 = DK2+EK2 ( ĐỊNH LÍ Py ta go)
=>EK2 = ED2-DK2 = 102-82 = 100-64 = 36
=> EK = \(\sqrt{36}\) = 6
=> EK = 6 cm
Xét tam giác vuông DKF vuông tại K
=> DF2 = KF2+DK2 ( định lí Py ta go)
=>KF2 = DF2-KF2 = 152-82 = 225-64 = 161
=> KF =\(\sqrt{161}\) cm
Vì EK+KF=EF => EF= 6+\(\sqrt{161}\)
Chu vi tam giác DEF là
( 6+\(\sqrt{161}\) ) + 10+15 = 6+\(\sqrt{161}\) + 25 (cm)
đ/s ....
Cho tam giác DEF vuông tại D có DE=6cm, DF =8cm, đường cao DH. Đường phân giác EK cắt DH tại I (K ∈ DF)
a) Tính độ dài đoạn thẳng EF,DK,KF
b) Chứng minh △DEK∼△HEI
c) Chứng minh DE.EI=EK.EH