Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Triều
Xem chi tiết
Trần Thị Loan
6 tháng 9 2015 lúc 11:53

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => a = b.k; c = d.k

\(\frac{2005a-2006b}{2006c+2007d}=\frac{2005b.k-2006b}{2006d.k+2007.d}=\frac{b\left(2005k-2006\right)}{d\left(2006k+2007\right)}=\frac{b}{d}.\frac{2005k-2006}{2006k+2007}\) (1)

\(\frac{2005c-2006d}{2006a+2007b}=\frac{2005d.k-2006d}{2006b.k+2007b}=\frac{d\left(2005k-2006\right)}{b\left(2006k+2007\right)}=\frac{d}{b}.\frac{2005k-2006}{2006k+2007}\) (2)

Từ (1)(2) => vế trái khác vế phải : Đề sai

 

 

Diệp Thiên Giai
Xem chi tiết
Đặng Quỳnh Ngân
10 tháng 10 2016 lúc 20:41

Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(1\right)\Rightarrow a=bk;c=dk\)

Thay a và c vào tỉ số \(\frac{2005a-2006b}{2006c+2007d}=\frac{2005c-2006d}{2006a+2007b}\), ta có :

\(\frac{2005a-2006b}{2006c+2007d}=\frac{2005bk-2006b}{2006dk-2007d}=\frac{b\left(2005k-2006\right)}{d\left(2006k+2007\right)}\)

\(\frac{2005c-2006d}{2006a+2007b}=\frac{2005dk-2006d}{2006bk+2007b}=\frac{d\left(2005k-2006\right)}{b\left(2006k+2007\right)}\)

Mà \(\frac{b}{d}\ne\frac{d}{b}\left(b,d\in Z;b\ne d;b,d\ne0\right)\)

=> Sai đề

 

Đặng Quỳnh Ngân
10 tháng 10 2016 lúc 20:41

ko biết đúng ko nha, sai thì đừng chửi nhá

Nguyễn Mai Anh
Xem chi tiết
Quang Nhat
8 tháng 10 2017 lúc 20:20

  Ta có: \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}=\frac{2005a}{2005c}=\frac{2006b}{2006d}=\frac{2006a}{2006c}=\frac{2007b}{2007d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2005a}{2005c}=\frac{2006b}{2006d}=\frac{2006a}{2006c}=\frac{2007b}{2007d}=\frac{2005a-2006b}{2005c-2006d}=\frac{2006a+2007b}{2006c+2007d}\)

=> \(\frac{2005a-2006b}{2006c+2007d}=\frac{2005c-2006d}{2006a+2007b}\)

Nguyễn Thị Lan Anh
Xem chi tiết
Duy Lâm
Xem chi tiết
nguyễn quỳnh chi
Xem chi tiết
Đỗ Nguyễn Đức Trung
Xem chi tiết
Shizadon
31 tháng 10 2017 lúc 22:28

Từ \(\dfrac{2005a-2006b}{2006c+2007d}=\dfrac{2005c-2006d}{2006a+2007b}\)

=> \(\dfrac{2005a-2006b}{2005c-2006d}=\dfrac{2006c+2007d}{2006a+2007b}\) (1)

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{d}{b}\)

=> \(\dfrac{2005a}{2005c}=\dfrac{2006b}{2006d}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{2005a}{2005c}=\dfrac{2006b}{2006d}=\dfrac{2005a+2006b}{2005c+2006d}\) (2)

Từ \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{2006a}{2006c}=\dfrac{2007d}{2007b}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{2006a}{2006c}=\dfrac{2007b}{2007d}=\dfrac{2006a-2007d}{2006c-2007b}\) (3)

Từ (1),(2),(3) => \(\dfrac{2005a-2006b}{2006c+2007d}=\dfrac{2005c-2006d}{2006a+2007b}\)

chu ngọc trâm anh
Xem chi tiết
ctk_new
20 tháng 9 2019 lúc 18:07

\(3a^2+2b^2=7ab\)

\(\Leftrightarrow3a^2+2b^2-7ab=0\)

\(\Leftrightarrow3a^2-6ab-ab+2b^2=0\)

\(\Leftrightarrow3a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-2b\right)=0\)

Mà \(3a>b>0\)nên \(3a-b>0\)

Vậy \(a-2b=0\Leftrightarrow a=2b\Leftrightarrow\frac{a}{2}=\frac{b}{1}\)

Đặt \(\frac{a}{2}=\frac{b}{1}=k\Rightarrow\hept{\begin{cases}a=2k\\b=k\end{cases}}\)

\(\Rightarrow P=\frac{2005.2k-2006.k}{2006.2k+2007.k}=\frac{2004k}{6019k}=\frac{2004}{6019}\)

Nguyễn Anh Hào
Xem chi tiết
_ɦყυ_
7 tháng 9 2017 lúc 22:44

Ta có: 2006a + 2006b = 2007a + 2006b = 4029052(1)

=>2007a+2006b-2006a-2006b=0

=>a=0.

Thay a=0 vào (1) ta dc:

 2006a + 2006b = 2007a + 2006b = 4029052

=>2006.0+2006b=2007.0+2006b=4029052

=>0+2006b=0+2006b=4029052

=>2006b=4029052

=>b=4029052:2006

=>b=\(\frac{2014526}{1003}.\)

Hay b là số chính phương

Mà a=0

=>a+b là số chính phương.

=> a + b + 201 là số chính phương(đpcm).