Bài 2: Cho tứ giác EFGH biết E:F:G:H = 1: 2: 4:5 .Tính các góc của tứ giác
Tứ giác \(EFGH\) có các góc cho như trong Hình 5.
a) Chứng minh rằng \(EFGH\) là hình thang
b) Tìm góc chưa biết của tứ giác
a) Ta có:
\(\widehat {\rm{E}} + \widehat {\rm{F}} = 95^\circ + 85^\circ = 180^\circ \)
Mà hai góc ở vị trí Trong cùng phía
Suy ra \(EH\;{\rm{//}}\;FG\)
Suy ra: \(EFGH\) là hình thang
b) Xét hình thang \(EFGH\) ta có: \(\widehat E + \widehat F + \widehat G + \widehat H = 360^\circ \)
\(\begin{array}{l}95^\circ + 85^\circ + 27^\circ + \widehat H = 360^\circ \\\widehat H = 153^\circ \end{array}\)
Bài 1: Cho tứ giác ABCD và các điểm M,N,P,Q theo thứ tự là trung điểm của AB, BC, CD,DA
a. Chứng minh rằng: TỨ giác MNPQ là hình bình hành
b. 2 đường chéo AC và BD phải có điều kiện gì thì MNPQ là hình thoi, hình vuông, hình chữ nhật.
Bài 2: Cho tứ giác ABCD biết AC vuông góc với BD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA
a. Tứ giác EFGH là hình gì? Vì sao?
b. Tính diện tích tứ giác EFGH biết AC=6cm ; BD = 4 cm
Help me!
Bài 10. Cho tứ giác , biết . Tính các góc của tứ giác .
Bài 11. Cho tứ giác , biết . Tính các góc của tứ giác
.
Bài 12. Cho tứ giác có . Tính góc
Bài 13. Cho tứ giác biết + = 2000, + = 1800; + = 1200. Tính số đo các góc
EFGH G E 10 , F E 30 , H 2G o o EFGH
MNPQ P Q 5 , M Q 45 , N 2Q 40 o o o
MNPQ
ABCD A 70 , B 80 , C D 20 o o o C, D.
ABCD B C B D C D
tor.com
Bài 14:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{E}}{4}=\dfrac{\widehat{F}}{7}=\dfrac{360^0}{15}=24^0\)
Do đó: \(\widehat{A}=24^0;\widehat{B}=72^0;\widehat{C}=96^0;\widehat{F}=168^0\)
Cho hình bình hành ABCD, AB = 6cm, AD = 4cm. Các tia phân giác của các góc A, B, C, D cắt nhau tạo thành tứ giác EFGH.
a) Tứ giác EFGH là hình gì ?
b ) Tính độ dài đường chéo của tứ giác EFGH
c ) Hinh bình hành ABCD có thêm điều kiện gì để diện tích tứ giác EFGH lớn nhất ?
Bài 1: Cho tứ giác ABCD. Gọi E,F,G,H lần lượt ;à trung điểm của AB,AC,CD,BD
a) Tứ giác EFGH là hình gì ?
b) Tính chu vi của tứ giác EFGH biết AD=a , BC=b
Bài 1:phân tích đa thức sau thành nhân tử: a,x^3+2x^2y+xy^2-9x
b, 2xy-x^2-y^2+49
Bài 2: Cho tứ giác ABCD,biết AC vuông góc với BD. Gọi E,F,G,H theo thứ tự là trung điểm của AB,BC,CD,DA
a, Tứ giác EFGH là hình gì?Vì sao?
b, Tính diện tích của tứ giác EFGH,biết AC=6(cm) ,BD=4(cm)
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi E , F, G, H lần lượt là các trung điểm của các cạnh AB, BC, CD, DA.
a) Tứ giác EFGH là hình gì.
b) Biết Ac = 10cm, BD = 8cm. Tính diện tích tứ giác EFGH.
c) Cần có điều kiện gì để tứ giác EFGH là hình vuông
a) Xét ΔABC có
E là trung điểm của AB(gt)
F là trung điểm của BC(gt)
Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔADC có
H là trung điểm của AD(gt)
G là trung điểm của CD(gt)
Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra HG//EF và HG=EF
Xét ΔABD có
E là trung điểm của AB(gt)
H là trung điểm của AD(gt)
Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)
⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)
Ta có: EH//BD(cmt)
BD⊥AC(gt)
Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)
Ta có: HG//AC(cmt)
EH⊥AC(Cmt)
Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)
hay \(\widehat{EHG}=90^0\)
Xét tứ giác EHGF có
HG//EF(cmt)
HG=FE(cmt)
Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)
nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: EFGH là hình chữ nhật(cmt)
nên \(S_{EFGH}=EF\cdot EH\)
\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)
Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2
c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG
hay AC=BD
Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông
cho tứ giác ABCD biết : A ; B: C;D = 1:2:3:4 .Tính các góc của tứ giác
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{d}{4}=\dfrac{a+b+c+d}{1+2+3+4}=\dfrac{360}{10}=36\)
Do đó: a=36; b=72; c=108; d=144