Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Hà Quang Minh
8 tháng 9 2023 lúc 21:39

a) Ta có:

\(\widehat {\rm{E}} + \widehat {\rm{F}} = 95^\circ  + 85^\circ  = 180^\circ \)

Mà hai góc ở vị trí Trong cùng phía

Suy ra \(EH\;{\rm{//}}\;FG\)

Suy ra: \(EFGH\) là hình thang

b) Xét hình thang \(EFGH\) ta có: \(\widehat E + \widehat F + \widehat G + \widehat H = 360^\circ \)

\(\begin{array}{l}95^\circ  + 85^\circ  + 27^\circ  + \widehat H = 360^\circ \\\widehat H = 153^\circ \end{array}\)

Nguyễn Ngọc Huyền
Xem chi tiết
Nguyễn Ngọc Huyền
21 tháng 12 2018 lúc 21:20

giúp mình với sắp thi rồi

Oanh Nguyen Yen
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 20:07

Bài 14:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{E}}{4}=\dfrac{\widehat{F}}{7}=\dfrac{360^0}{15}=24^0\)

Do đó: \(\widehat{A}=24^0;\widehat{B}=72^0;\widehat{C}=96^0;\widehat{F}=168^0\)

 

Sắc màu
Xem chi tiết
Tears
Xem chi tiết
Lê Thị Vân
Xem chi tiết
Thiệnn Lànhh Khôii
Xem chi tiết
Ahn Jiwon
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2021 lúc 23:17

a) Xét ΔABC có

E là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có

H là trung điểm của AD(gt)

G là trung điểm của CD(gt)

Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra HG//EF và HG=EF

Xét ΔABD có 

E là trung điểm của AB(gt)

H là trung điểm của AD(gt)

Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: EH//BD(cmt)

BD⊥AC(gt)

Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)

Ta có: HG//AC(cmt)

EH⊥AC(Cmt)

Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)

hay \(\widehat{EHG}=90^0\)

Xét tứ giác EHGF có 

HG//EF(cmt)

HG=FE(cmt)

Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)

nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: EFGH là hình chữ nhật(cmt)

nên \(S_{EFGH}=EF\cdot EH\)

\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)

Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2

c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG

hay AC=BD

Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông

Lê Thị Ánh Nguyệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2022 lúc 21:23

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{d}{4}=\dfrac{a+b+c+d}{1+2+3+4}=\dfrac{360}{10}=36\)

Do đó: a=36; b=72; c=108; d=144