Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huy Hoàng
Xem chi tiết
Nhóc_Siêu Phàm
16 tháng 12 2017 lúc 23:48

  1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp. 
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC 
=> AO là đường trung tuyến ứng với cạnh huyền 
=> OA = OB =OC = 1/2 BC 
=> O là tâm của đường tròn ngoại tiếp tam giác ABC 
Vậy .... 
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác. 
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC 
=>OA = OB =OC (*) 
mà BC là đường kính của đường tròn ngoại tiếp 
=> O là trung điểm BC 
=> OB = OC = 1/2 BC(**) 
từ (*) và (**) => OA = OB = OC = 1/2 BC 
=> tam giác ABC vuông tại A 

Nhật Vy Nguyễn
20 tháng 2 2018 lúc 10:14

@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?

Nhật Vy Nguyễn
20 tháng 2 2018 lúc 10:26

1> Giả sử đó là tam giác vuông ABC, trung tuyến AM. Trên tia đối MA lấy điểm H sao cho M là trung điểm của AH.

=>MA=MH=1/2AH(*)

\(\Delta AMC=\Delta BMH\left(c.g.c\right)\)

=>\(\widehat{CAM}=\widehat{BHM}\)và AC=BH

Mà hai góc này nằm ở vị trí so le trrong của 2 đường thẳng AC và BH

=> AC // BH

mà AC L AB => BH L AB => \(\widehat{ABH}=90^o\)

Xét \(\Delta ABC\)\(\Delta BAH\)

AC=BC

\(\widehat{BAC}=\widehat{ABH}=90^o\)

cạnh chung AB

=> \(\Delta ABC=\Delta BAH\left(c.g.c\right)\)

=> BC=AH(**)

Lại có MB=MC=1/2BC(***)

Từ (*),(**),(***)=> MA=MB=MC=1/2BC (đpcm)

Inoue Miu
Xem chi tiết
Inoue Miu
Xem chi tiết
luongngocha
Xem chi tiết
Nguyễn Đức Tiến
18 tháng 1 2016 lúc 21:13

A B C H K

(GT,KL tự ghi nhé!)

Vẽ đoạn thẳng AK sao cho \(AH=\frac{AK}{2}\) (1)

Xét tam giác AHB và tam giác KHC có :

AH = AK (Cách vẽ)

AHB = KHC ( 2 góc đối đỉnh )

BH = HC (GT)

\(\Rightarrow\) tam giác AHB = tam giác KHC ( c.g.c)

\(\Rightarrow\) BAH = CKH ( 2 góc tương ứng )

\(\Rightarrow\) AB song song với CK ( cặp góc so le trong bằng nhau)

   Mà AB vuông góc với AC (GT)

\(\Rightarrow\) CK vuông góc với AC

Xét tam giác ABC và tam giác CKA có :

   AB = CK (Do tam giác AHB = tam giác KHC)

   BAC = KCA = 90 độ

  AC chung

\(\Rightarrow\) tam giác ABC = tam giác CKA ( c.g.c )

\(\Rightarrow\) BC = KA (2)

Từ (1) và (2) \(\Rightarrow\) \(AH=\frac{BC}{2}\)

     

 

 

tughujdr
16 tháng 1 2016 lúc 19:52

de et qua thang khung moi khong biet

Lê Bật Thành Công
Xem chi tiết
Trần Thị Thúy Hiền
Xem chi tiết
Đinh Tuấn Việt
16 tháng 7 2016 lúc 21:32

Với tam giác ABC có góc A=90 độ và góc B=30 độ 
=> góc C=60 độ 
Gọi M là trung điểm của BC 
mà tam giác ABC có góc A bằng 90 độ 
=>AM=BM=CM(định lý) 
=>tam giác AMC cân tại M(dấu hiệu nhận biết) 
mà góc C bằng 60 độ 
=> tam giác AMC đều(dấu hiệu nhận biết) 
=>AC=MC(đ/n) 
mà MC =1/2.BC (gt) 
=> AC = 1/2 BC (tcbc) 
Ta có điều phải chứng minh

Lê Nguyên Hạo
16 tháng 7 2016 lúc 21:16

 

*Chứng minh :
- Có ^ACB = 30° --> ^ABC = 60° ( do tổng 3 góc trong 1 tam giác = 180°)

- Gọi M là trung điểm BC --> MB = MC = BC/2

- Trong tam giác vuông thì đường trung tuyến xuất phát từ đỉnh góc vuông = 1/2 cạnh huyền --> AM = 1/2BC = BM

- Xét ∆ABM có AM = BM --> ∆ABM cân cại M,lại có ^ABM = 60°

--> ∆ABM là tam giác đều (tam giác cân có 1 góc = 60° thì là tam giác đều)

--> AB = AM = BM = 1/2BC (đpcm)

Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc) (đpcm)

Cho tam giác ABC(A=90 độ,B=30 độ)
ta có C= 60 độ
trên tia đối tia AC lấy D sao cho AC=AD
tam giác ABD=tam giác ABC(BA chung,AC=AD,A=90độ)
=> BD=BC
tam giác BDC cân có C= 60độ =>tam giác BDC đều=>BD=BC=DC=2AC (đpcm)
 

 

 
tthnew
28 tháng 7 2019 lúc 8:24

Thử cách này xem sao (dốt hình, ko bt đúng hay sai)

GT:Tam giác ABC vuông tại A; ^ABC = 30o

KL: AC = 1/2 . BC

Chứng minh: Trên tia đối AC, lấy điểm K sao cho AK = AC. Khi đó

\(\Delta ABC=\Delta ABK\) (2 cạnh góc vuông)

Suy ra \(BC=BK\) (1) và ^ABC = ^ABK = 30o (2) và AC = AK

Từ (1) suy ra tam giác BCK cân tại B (3)

Từ (2) suy ra ^CBK = 60o (4)

Từ (3) và (4), xét tam giác BCK cân tại B có một góc bằng 60o nên tam giác BCK đều tức là BC = BK = CK = AC + AK (do AC + AK = CK mà) = 2AC (do AC = AK)

Ta có: \(BC=2AC\Leftrightarrow AC=\frac{1}{2}BC^{\left(đpcm\right)}\)

Trần Mạnh Phong
Xem chi tiết
NT Ánh
Xem chi tiết
Trần Việt Linh
9 tháng 9 2016 lúc 13:44

Bài 1:

3 4 x y z

Áp dụng đl pytago ta có:

\(\left(y+z\right)^2=3^2+4^2=9+16=25\)

=> y + z = 5

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

\(3^2=y\left(y+z\right)=5y\)

=>\(y=\frac{3^2}{5}=1,8\)

Có: y + z =5

=>z=5-y=5-1,8=3,2

Áp dụng hên thức liên quan tới đường cao:

\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)

=>\(x=\frac{12}{5}\)

Trx Bình
2 tháng 9 2019 lúc 9:17

Bài 2:

B A C H 1cm 2cm x y

Ta có: △ABC vuông tại A và có đg cao AH

AB2 = BH.BC ( hệ thức lượng )

⇒ x2 = 1 . 3

⇒ x = \(\sqrt{1.3}=\sqrt{3}cm\)

AC2 = CH.BC

⇒ y2 = 2 . 3

⇒ y = \(\sqrt{6}\) cm

Doma Umaru
Xem chi tiết
Đỗ Ngọc Hải
3 tháng 6 2018 lúc 21:24

A B C M
a)Gọi M là trung điểm cạnh huyền BC, Góc B=30 độ => Góc C=60 độ
Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
=> Tam giác AMC cân tại A
Mà góc C=60 độ => tâm giác AMC đều => AC=MC=1/2.BC => Cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền

b)Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
Mà AC=BC => Tam giác AMC đều => Góc C=60 độ => Góc A=30 độ =>góc đối diện với cạnh bằng 1/2 cạnh huyền bằng 30 độ

Tuấn Nguyễn
3 tháng 6 2018 lúc 21:18

Chứng minh: 

Ta có: ^C= 30° => ^B= 60° 
Trên cạnh BC lấy điểm M sao cho AB = BM. 
=> ∆ABM cân tại B mà ^B= 60° 
=>∆ABM đều 
=> AB= BM= AM (1) 
và ^BAM= ^B= ^BMA= 60° 
∆ABC vuông tại A 
=> ^B + ^C = 90° 
=> 60° + ^C = 90° 
=> ^C = 30° (2) 
Ta lại có : ^BAM + ^MAC = ^BAC 
=> 60° + ^MAC = 90° 
=> ^MAC = 30° (3) 
Từ (1) và (2): => ^MAC = ^C ( = 30°) 
=> ∆AMC cân tại M 
=> AM = MC (4) 
Từ (1) và (4): => AB = BM =mc 
=> 2AB = BM + MC 
=> 2AB = BC 
=> AB = BC/2 (đpcm)

b) 

Tuấn Nguyễn
3 tháng 6 2018 lúc 21:19

Ví dụ tam giác ABC vuông tại A
trên cạnh BC lấyđiểm D sao cho AB=AD
mà tam giác ABC có góc A =90 độ
giả dụ góc C = 30 độ
thì góc B=60 độ
mà AB=BD
=>tam giác ABD là tam giác đều
=>góc BAD =60 độ
=>góc DAC=30 độ
mà góc C cũng = 30 độ
=>tam giác ADC cân tại D
=>AD=DC
có AB=BD=AD
=>D là trung điểm của BC
=> bạn tự kết luận