Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d (d cắt BC tại một điểm nằm ngoài đoạn BC). Từ B kẻ BE\(\perp\)d (E\(\in\)d).Từ C kẻ CF\(\perp\)d (F\(\in\)d). So sánh độ dài hai đoạn thẳng BE và CF với độ dài đoạn thẳng EF
cho tam giac ABC goc A=90độ qua A kẻ đường thẳng d cắt BC tại một điểm nằm ngoài đoạn BC;BE vuong goc voi d (E thuoc d);CF vuong goc voi d (F thuoc d) so sánh BE,CF voi EF
cho tam giác ABC có góc A=90độ qua A kẻ đường thẳng d cắt BC tại một điểm ngoài đoạn BC;BE vuông góc với d(E thuộc d);CF vuông góc với d(F thuộc d).So sánh:BE,CF với EF
Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ
BE AM ( E AM) ⊥
, từ C hạ
CF AN ( F AN) ⊥
Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/
BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ
BE d ( E d) ⊥
, từ C hạ
CF d ( F d) ⊥
. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥
và trên tia HM lấy điểm E sao cho HM = EM. Kẻ
HN AB ⊥
và trên tia
HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^
Sao bổ sung hình vẽ không được vậy nè
Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I
a) Chứng minh tam giác ABD = tam giác ACE
b) Chứng minh I là trung điểm của BC
c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH
d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF
Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K
a) Tính độ dài cạnh BC
b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC
c) Chứng minh AC = DK
d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân
Các bạn làm hộ mình nha, mình cần gấp lắm
nhìu zữ giải hết chắc chết!!!
758768768978980
Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.
a) Tính độ dìa AC khi AB= 9cm, BC= 15cm
b) Chứng minh: Tam giác ABD=tam giác EBD
c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân
d) Chứng minh: AD<DC
Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D
a) Tính độ dài BC?
b) Chứng minh rằng: Tam giác ABF=tam giác CDF
c) Chứng minh: BF<(AB+BC):2
Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 9cm, AC= 12cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh: Tam giác KDC cân
d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 3cm, AC= 4cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh \(Dh\perp BC\)
d) So sánh DH với DK
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
#)Góp ý :
Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v
Bài 1: a, áp dụng định lí py-ta-go vào t.giác vuông ta có:
\(BC^2=AC^2+AB^2\)
=> \(AC^2=BC^2-AB^2\)
=> \(AC^2\)=225-81=144
=>AC=12 (cm)
vậy AC=12 cm
b, xét 2 tam giác vuông ABD và EBD có:
BD cạnh chung
BA=BE(gt)
=> \(\Delta ABD=\Delta EBD\)(cạnh huyền-cạnh góc vuông)
c, ta có: \(\Delta ADH=\Delta EDC\)(cạnh góc vuông-góc nhọn)
=> AH=EC(2 cạnh tương ứng)
Mà AB=EB(câu b) => HB=CB
=> \(\Delta HBC\)cân tại B
d, trong tam giác vuông ADH có: AD<DH(vì cạnh huyền lớn hơn cạnh góc vuông) mà DH=DC=> DC>AD hay AD<DC đpcm
Cho tam giác ABC vuông tại A. Đường phân giác BD (D∈AC). Kẻ DE\(\perp\) BC(E∈BC)
a)Chứng minh tam giác ABD=tam giác EBD
b)So sánh AD và DC
c)Kẻ AH vuông góc với BC(H∈BC), AH cắt BD tại F. Chứng minh AD song song DE và tam giác ADF cân
Cho tam giác ABC vuông tại A, gọi D là một điểm nằm giữa B và C. Qua D kẻ đường thẳng song song với AB, cắt AC tại E. Qua D kẻ đường thẳng song song với AC, cắt AB tại F.
a) Chứng minh tứ giác AEDF là hình chữ nhật.
b) Tìm vị trí của điểm D trên cạnh BC để tứ giác AEDF là hình vuông
c) Tìm vị trí của điểm D trên cạnh BC để độ dài đoạn thẳng EF là ngắn nhất.
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.