Cho a, b, c, d ∈ Z. Biết a.b là liền sau của c.d và a+b=c+d. CMR: a=b
biết a nhân b là số liền sau của c nhân d và a+b=c.d CMR a=b ( a, b thuộc Z)
Cho a , b , c , d là số nguyên ; biết tích a.b là số liền sau của tích c.d và a+b=c+d
( dấu . là dấu nhân)
đề bài này hình như mik chép thiếu...xin lỗi nha
a) Cho a;b;c \(\in\)Z biết ab - ac + bc - c2 = -1. Chứng tỏ a và b là hai số đối nhau.
b) Cho a;b;c;d \(\in\)Z biết a.b là số liền sau của c.d và a + b = c + d, Chúng tỏ a = b
a) Giải:
Ta có:
\(ab-ac+bc-c^2=-1\)
\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Rightarrow\left(b-c\right)\left(a+c\right)=-1\)
Suy ra trong hai thừa số \(\left(b-c\right);\left(a+c\right)\) có một thừa số bằng \(1\)
Thừa số kia bằng \(-1\), nghĩa là chúng đối nhau
\(\Rightarrow b-c=-\left(a+c\right)\) Hay \(b-c=-a-c\)
Suy ra \(b=-a\) tức \(a\) và \(b\) là hai số đối nhau
Vậy \(a\) và \(b\) là hai số đối nhau (Đpcm)
b) Giải:
Ta có:
Từ \(a+b=c+d\Rightarrow d=a+b-c\)
Vì \(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)
\(\Rightarrow ab-c\left(a+b-c\right)=1\)
\(\Rightarrow ab-ac-bc+c^2=1\)
\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)
\(\Rightarrow\left(b-c\right)\left(a-c\right)=1\)
Suy ra \(a-c=b-c\) (vì cùng bằng \(1\) hoặc \(-1\))
Hay \(a=b\) (Đpcm)
CHO PHÂN SỐ A+B/C+D (A,B,C,D THUỘC Z VÀ ĐỀU LỚN HƠN 0 )
BIẾT TỬ VS MẪU CỦA P/S ĐÓ ĐỀU CHIA HẾT CHO K ( K KHÁC 0 )
CMR:(A.B-C.D) CHIA HẾT CHO K
nay ban danh lai di minh doc ma chang hieu
Cho các số a,b,c là các số nguyên. Biết tích a.b là số liền sau tích c.d và a + b = c + d. Chứng minh rằng: a = b
Giúp mình với mọi người ơi! ai làm đúng hộ mình thì mình tk~~
Cho các số nguyên a,b,c,d thỏa mãn các điều kiện sau: a+b=c+d và a.b+1=c.d CMR: c=d
Ta có a + b = c + d => a = c + d - b
thay vào ab + 1 = cd
=> ( c + d - b ) . b + 1 = cd
<=> cb + db - cd + 1 - b2 = 0
<=> b ( c - b ) - d ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) = -1
Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :
1 : b - d = -1 và c - b = 1
<=> d = b + 1 và c = b + 1
=> c = d
2 : b - d = 1 và c - b = -1
<=> d = b - 1 và c = b - 1
=> c = d
Vậy từ 2 trường hợp trên ta có c = d
Ta có a + b = c + d => a = c + d - b
thay vào ab + 1 = cd
=> ( c + d - b ) . b + 1 = cd
<=> cb + db - cd + 1 - b2 = 0
<=> b ( c - b ) - d ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) + 1 = 0
<=> ( b - d ) ( c - b ) = -1
Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :
1 : b - d = -1 và c - b = 1
<=> d = b + 1 và c = b + 1
=> c = d
2 : b - d = 1 và c - b = -1
<=> d = b - 1 và c = b - 1
=> c = d
Vậy từ 2 trường hợp trên ta có c = d
cho a/b=c/d khac 1 va c khac 0
CMR:
a)((a.b)/(c.d))^2=(a.b)/(c-d)
b)((a.b/c.d))^3=((a^3-b^3)/(a^3-d^3))
Cho a,b,c,d thuộc Z.Biết tích a.b là số liền sau của tích c.d và a+b=c+d.Chứng minh rằng a=b
cho a,b,c,d thuộc N* thỏa mãn : a+b=c+d và a.b+1=c.d
CMR c=d