Cho \(\Delta\) ABC nhọn. Ở ngoài tam giác, vẽ các \(\Delta\) vuông cân tại A là \(\Delta\) ABD, \(\Delta\) ACE. Chứng minh rằng:
a) DC = BE
b) DC \(\perp\) BE
Bài 1: Cho tam giác nhọn ABC. Vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE . Gọi M là giao điểm của DC và BE . Chứng minh rằng:
a) \(\Delta ABE=\Delta ADC\)
b) \(\widehat{BMC=120^0}\)
a )
Vì ΔABDΔABD là tam giác đều(gt) ⇒DABˆ⇒DAB^=600
ΔACEΔACE là tam giác đều(gt) ⇒EACˆ⇒EAC^=600
⇒DABˆ+BACˆ=EACˆ+BACˆ⇒DAB^+BAC^=EAC^+BAC^
⇒DACˆ=BAEˆ⇒DAC^=BAE^
Xét ΔDACΔDAC và ΔBAEΔBAE có:
DA=BA(vì ΔABDΔABD là tam giác đều)
DACˆ=BAEˆDAC^=BAE^ (cmt)
AC=AE(vì ΔACEΔACE là tam giác đều)
⇒ΔDAC=ΔBAE(c.g.c)
b, Ta có: ^ AEM + ^MEC = 60 độ
mà ^AEM = ACD (Tam giác ABE = tam giác ADC)
=>^MEC + ^MCA = 60 độ
Ta lại có: ^ACE = 60 độ
=>^MCA + ^ACE+ ^MEC = 120 độ
mà ^MCA + ^ACE = ^MCE
=> ^MCE + ^MEC = 120 độ
Ta lại có: ^EMC + ^MCE + ^CEM = 180 độ
mà ^MCE + ^CEM =120 độ (cm trên)
=>^EMC + 120 độ =180 độ
=> ^EMC = 180 độ - 120 độ =60 độ
Ta lại có: ^BMC + ^EMC = 180 độ
mà ^EMC = 60 độ
=> ^BMC + 60 độ =180 độ
=> ^BMC = 180 độ - 60 độ = 120 độ (đpcm)
cho \(\Delta\) ABC, vẽ về phía ngoài của \(\Delta\) ABC các tam giác vuông tại A là ABD,ACE có AB=AD, AC=AE.Cmr
a)DC=BE
b)DC \(\perp\) BE
c)qua A vẽ đ/t vuông góc với BC tại H cắt DE tại K.cmr KD=KE
d)Gọi Q là trung điểm của BC. cm AQ \(\perp\)DE
Cho \(\Delta ABC\) nhọn . Vẽ ra ngoài tam giác này các \(\Delta ABD\) vuông cân tại D; \(\Delta ACE\) vuông cân tại E . Gọi M là trung điểm của BC. Chứng minh :\(DM\perp EM\)
cho \(\Delta ABC\)có góc A nhọn. Vẽ phía ngoài tam giác ABC các tam giác BAD vuông cân tại A, tam giác CAE vuông cân tại A. Chứng mimh:
a) \(BD=BE;DC\perp BE\)
b)\(BD^2+CE^2=BC^2+DE^2\)
c)đường thẳng đi qua A vuông góc với DE cắt BC tại K. Chứng minh rằng K là trung điểm của BC.
Cho tam giác ABC có góc A là góc nhọn , vẽ phía ngoài tam giác các tam giác vuông ABD,ACE vuông cân tại A
a. Chứng minh DC=BE và BE vuông góc DC
b.Kẻ AH vuông góc với BC tại H . AG cắt DE tại M Chứng minh rằng ND=ME
a. xét tam giác ABE và tam giác ACD co:AB=AD; góc BAE=gocDAC; AE=AC suy ra tam giác ABE=tam giác ADC(c.g.c);suy ra: BE=DC;gocABE=góc ACD. đặt giao điểm của DC và AB làO;BE và DC là K ta có:
góc ADO+góc DOA+góc OAM=180
góc OBK+gócBOK+gócOKB=180
mà: góc ADO=góc OBA;DOA=BOK suy ra:OAM=OKB;MÀ OAM=90=>OKB=90=>BEvuông góc với DC
Cho \(_{\Delta}\)ABC nhọn. Về phía ngoài \(_{\Delta}\)ABC vẽ các \(_{\Delta}\)ABD vuông cân đỉnh B, \(_{\Delta}\)ACE vuông cân đỉnh C. Gọi M là giao điểm của BE và CD. C/m rằng: \(AM\perp BC\)
Cho tam giác ABC nhọn, AH là đường cao. Vẽ ra phía ngoài tam giác ABD vuông cân tại B và tam giác ACE vuông cân tại C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng mình rằng:
a) \(\Delta DBC=\Delta BAK\)
b)\(DC\perp KB\)
c)CD, KH, EB đồng quy tại 1 điểm
Cho \(\Delta ABC\), M là trung điểm BC, dựng ra phía ngoài của \(\Delta ABC\)các tam giác vuông cân tại A là \(\Delta ABD,\Delta ACE\)
Chứng minh \(AM\perp DE\)
Bài 1: Cho tam giác ABC nhọn; vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là tam giác ABD và tam giác ACE
a) Chứng minh DC=BE và DC\(\perp\)BE
b) Gọi H là chân đường vuông góc kẻ từ A đến ED và M là trung điểm của đoạn thẳng BC. Chứng minh A,M,H thẳng hàng
a) ta có EAB=\(90^0+BAC\)
DAC=\(90^0+BAC\)
=> EAB=DAC
XÉT \(\Delta EAB\)VÀ \(\Delta CAD\)
AE=AC
AD=AB
EAB=DAC
\(\Rightarrow\Delta EAB=\Delta CAD\left(c-g-c\right)\)
\(\Rightarrow BE=DC\)(CẠNH TƯƠNG ỨNG)