Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Beautiful Angel
Xem chi tiết
Iceghost
30 tháng 3 2017 lúc 19:34

Ta có $f(1) = (1^2+1+1)^{2018} + (1^2-1+1)^{2018} - 2= 3^{2018} - 2 \ne 0$ nên theo định lý Bezout thì $f(x)$ không chia hết cho $(x-1)$, dẫn đến $f(x)$ không chia hết cho $(x^2-x)$

Lưu Hiền
11 tháng 4 2017 lúc 19:36

@Beautiful Angel ơi, đa thức này chia hết cho đa thức kia khi 2 đa thức có cùng tập nghiệm đó, giả sử trong bài này, bạn tìm nghiệm của g(x), rồi thấy nghiệm đso vào f(x) nếu thay vào và f(x) = 0 thì có nghĩa là f(x) chia hết g(x) còn ko thì ngược lại :), đó là định lí bơzout đó bạn :)), cái này mình đọc trong chuyên đề, chắc học thường ko có

truong xom
23 tháng 10 2017 lúc 21:07

2018 + x chia hết 23

thụyhang
Xem chi tiết
Nguyễn Tiến Dũng
28 tháng 2 2018 lúc 12:45

Mk gợi ý nha

Bạn để ý x2-x=x(x-1) nên ta xét x=0 và x=1

Với x=0 ta được f(0)=0=>f(x) chia hết cho x

Với x=1 ta được f(1)=0=>f(x) chia hết cho x-1

Mà (x, x-1)=1=> f(x) chia hết x(x-1)

                     <=> f(x) chia hết cho x2-x

                      hay f(x) chia hết cho g(x)

Vậy... 

k và kb vs mk nha. 

Nguyễn Phương Bắc
10 tháng 4 2020 lúc 20:57

hello

Khách vãng lai đã xóa
Shinichi
10 tháng 4 2020 lúc 20:58

hello

Khách vãng lai đã xóa
Alan Walker
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
Hàn Tử Hiên
Xem chi tiết
Trần Ngọc Hoa
Xem chi tiết
Nguyễn Minh Đăng
Xem chi tiết
KCLH Kedokatoji
31 tháng 7 2020 lúc 8:50

Ta có: \(g\left(x\right)=x^2-x\)có nghiệm x=0 và x=1 (vì \(x^2-x=x\left(x-1\right)\))

Để chứng minh \(f\left(x\right)⋮g\left(x\right)\), ta sẽ chứng minh \(f\left(x\right)\)cũng có nghiệm x=0 và x=1.

Thay x=0 vào \(f\left(x\right)\):\(f\left(0\right)\)\(=\left(-1\right)^{2018}+1^{2018}-2=0\)

Thay x=1 vào \(f\left(x\right)\)\(f\left(1\right)=1^{2018}+1^{2018}-2=0\)

\(\Rightarrow\)x=0 và x=1 là hai nghiệm của \(f\left(x\right)\)

\(\Rightarrowđpcm\)

Khách vãng lai đã xóa
Kiệt Nguyễn
31 tháng 7 2020 lúc 8:51

\(g\left(x\right)=x^2-x\)

g(x) có nghiệm\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)

Để chứng minh \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)thì ta chứng minh tất cả nghiệm của đa thức g(x) cũng là nghiệm của f(x) hay 1 và 0 là nghiệm của f(x) (1)

Thật vậy:\(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)

+) Thay x = 0 vào f(x), ta được: \(f\left(0\right)=\left(0^2+0-1\right)^{2018}+\left(0^2-0+1\right)^{2018}-2=1+1-2=0\)

+) Thay x = 1 vào f(x), ta được: \(f\left(1\right)=\left(1^2+1-1\right)^{2018}+\left(1^2-1+1\right)^{2018}-2=1+1-2=0\)

Qua hai kết quả trên ta suy ra f(x) có 2 nghiệm là 0 và 1 (2)

Từ (1) và (2) suy ra \(f\left(x\right)⋮g\left(x\right)\)(đpcm)

Khách vãng lai đã xóa
poppy Trang
Xem chi tiết
Nguyễn Đạo
Xem chi tiết
Vũ Thùy Linh
23 tháng 7 2020 lúc 21:14
https://i.imgur.com/HY7OvZq.jpg