Let a,b be real nmubers.Prove that \(P=a^2+b^2-a-b-ab\ge-1\)
Luân Đàolamf tis baats ddawngr thwcs :))
Let a,b,c be positive real numbers. Prove that : \(\frac{1}{a\left(b+1\right)}+\frac{1}{b\left(c+1\right)}+\frac{1}{c\left(a+1\right)}\ge\frac{3}{\sqrt[3]{abc}\left(1+\sqrt[3]{abc}\right)}\)
Đặt \(\left(a;b;c\right)=\left(\frac{x}{y}k;\frac{y}{z}k;\frac{z}{x}k\right)\) \(k\inℝ^+\)
Bất đẳng thức cần chứng minh tương đương:
\(\frac{1}{\frac{x}{y}k\left(\frac{y}{z}k+1\right)}+\frac{1}{\frac{y}{z}k\left(\frac{z}{x}k+1\right)}+\frac{1}{\frac{z}{x}k\left(\frac{x}{y}k+1\right)}\ge\frac{3}{\sqrt[3]{\frac{x}{y}k\cdot\frac{y}{z}k\cdot\frac{z}{x}k}\left(1+\sqrt[3]{\frac{x}{y}k\cdot\frac{y}{z}k\cdot\frac{z}{x}k}\right)}\)
\(\Leftrightarrow\frac{yz}{xk\left(yk+z\right)}+\frac{zx}{yk\left(zk+x\right)}+\frac{xy}{zk\left(xk+y\right)}\ge\frac{3}{k\left(1+k\right)}\) (D)
Ta có: \(\frac{yz}{xk\left(yk+z\right)}+\frac{zx}{yk\left(zk+x\right)}+\frac{xy}{zk\left(xk+y\right)}\)
\(=\frac{\left(yz\right)^2}{xyzk\left(yk+z\right)}+\frac{\left(zx\right)^2}{xyzk\left(zk+x\right)}+\frac{\left(xy\right)^2}{xyzk\left(xk+y\right)}\)
\(\ge\frac{\left(xy+yz+zx\right)^2}{xyzk\left(xk+yk+zk+x+y+z\right)}\) (Bất đẳng thức Bunyakovsky dạng phân thức)
\(\ge\frac{3\left(xyz^2+xy^2z+x^2yz\right)}{xyzk\left(x+y+z\right)\left(k+1\right)}=\frac{3xyz\left(x+y+z\right)}{xyzk\left(x+y+z\right)\left(k+1\right)}=\frac{3}{k\left(k+1\right)}\)
=> BĐT (D) đúng => đpcm
Dấu "=" xảy ra khi: \(a=b=c\)
Let a;b;c be positive real numbers such that \(a^2+b^2+c^2=\frac{1}{3}\). Prove that :
\(4\left(a+b+c\right)+\frac{2}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge10\)
We have:\(\hept{\begin{cases}a^2+b^2+c^2=\frac{1}{3}\\a,b,c>0\end{cases}\Rightarrow0< a,b,c< \frac{1}{\sqrt{3}}}\)
We prove to:
\(4x+\frac{2}{3x}\ge-3x^2+\frac{11}{3}\) with \(0< x< \frac{1}{\sqrt{3}}\)
\(\Leftrightarrow4x+\frac{2}{3x}+3x^2-\frac{11}{3}\ge0\)
\(\Leftrightarrow9x^3+12x^2-11x+2\ge0\)
\(\Leftrightarrow\left(3x+1\right)^2\left(x+2\right)\ge0\) Always true to all \(0< x< \frac{1}{\sqrt{3}}\)
\(\Rightarrow VT\ge-3a^2+\frac{11}{3}-3b^2+\frac{11}{3}-3c^2+\frac{11}{3}\)
\(=-3\left(a^2+b^2+c^2\right)+11=-3.\frac{1}{3}+11=10\) \(\left(đpcm\right)\)
Đặt biểu thức trên là \(A\)
Ta có : \(A=\left(4a+\frac{2}{3a}\right)+\left(4b+\frac{2}{3b}\right)+\left(4c+\frac{2}{3c}\right)\)
Cần chứng minh \(4a+\frac{2}{3a}\ge-3a^2+\frac{11}{3}\) (*)
Thật vậy \(BĐT\Leftrightarrow4a+\frac{2}{3a}+3a^2-\frac{11}{3}\ge0\)
\(\Leftrightarrow\frac{12a^2+2+9a^3-11a}{3a}\ge0\Leftrightarrow\frac{\left(a+2\right)\left(3a-1\right)^2}{3a}\ge0\) (luôn đúng)
Tương tự : \(4b+\frac{2}{3b}\ge-3b^2+\frac{11}{3}\) và \(4c+\frac{2}{3c}\ge-3c^2+\frac{11}{3}\)
Cộng các bất dẳng thức vừa CM đc ta có :
\(A\ge-3\left(a^2+b^2+c^2\right)+\frac{11}{3}.3=-3.\frac{1}{3}+11=10\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Let a , b and c be positive real numbers such that a + b + c = 3 . Find the minimum value of the expression .
\(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{a^2+b^2+c^2}\)
Given that: a,b,c,d are positive real number, and the sum of them is 4. :Consider that ( chứng minh rằng)
\(\frac{1}{ab}+\frac{1}{cd}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
Có: \(\frac{1}{ab}+\frac{1}{cd}\ge\frac{4}{ab+cd}=\frac{8}{a^2+b^2+c^2+d^2}.\)
Cần CM: \(\frac{8}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
hay: \(\left(a^2+b^2+c^2+d^2\right)^2\ge16\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge4\)
CM Bđt phụ sau: \(a^2+b^2+c^2+d^2\ge\frac{\left(a+b+c+d\right)^2}{4}\)
Thật vậy: \(4\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(c-d\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2\ge0\)(đúng)
.................
Lê Nhật Khôi cách này lúc đầu em cũng tính làm như nó ngược dấu rồi thì phải:
\(\frac{8}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
\(\Leftrightarrow\frac{16}{2\left(a^2+b^2+c^2+d^2\right)}\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(a^2+b^2+c^2+d^2\right)}\)
\(\Leftrightarrow\left(a^2+b^2+c^2+d^2\right)^2\le16\) thế này mới đúng chứ?
_ tth_
Let \(a,b,c,k\) be positive real numbers such that \(k\left(ab+bc+ca\right)+2abc\le k^3\) . Prove that:
\(\left(1\right)k\left(a+b+c\right)\ge2\left(ab+bc+ca\right)\)
\(\left(2\right)k\left(a^3+b^3+c^3\right)\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\left(3\right)k\left(a^{2n-1}+b^{2n-1}+c^{2n-1}\right)\ge2\left(a^nb^n+b^nc^n+c^na^n\right)\) \(\left(n\ge0;n\in R\right)\)
mày bị điên rồi hả câu hỏi thế này làm gì có người giải được
Let a,b be the roots of equation \(x^2-px+q=0\) and let c,d be the roots of the equation \(x^2-rx+s=0\), where p,q,r,s are some positive real numbers. Suppose that :
\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}\)
is an integer. Determine a,b,c,d .
Let x, y, z be positive real numbers such that xy + yz + zx + xyz = 4 . Prove that :
\(3\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\ge\left(x+2\right)\left(y+2\right)\left(z+2\right)\)
Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\) Thì bài toán thành chứng minh
\(3\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Áp dụng holder ta có:
\(\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\left(2c\left(a+b\right)^2+2a\left(b+c\right)^2+2b\left(c+a\right)^2\right)\)
\(\ge\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^3=8\left(a+b+c\right)^3\)
\(\Rightarrow VT\ge3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\)
Từ đây ta cần chứng minh:
\(3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Leftrightarrow2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)( đúng )
Vậy có ĐPCM
Let a,b be the roots of equation \(x^2-px+q=0\) and let c,d be the roots of the equation \(x^2-rx+s=0\), where p,q,r,s are some positive real numbers. Suppose that :
\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}\)
is an integer. Determine a,b,c,d .
Ta có:
\(\hept{\begin{cases}ab=q\\a+b=p\end{cases}}\)và \(\hept{\begin{cases}cd=s\\c+d=r\end{cases}}\)
\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}=\frac{2\left(qc+sb+sa+qd\right)}{p^2+q^2+r^2+s^2}\)
\(=\frac{2\left(qr+sp\right)}{p^2+q^2+r^2+s^2}\le\frac{2\left(qr+sp\right)}{2\left(qr+sp\right)}=1\)
Với M = 1 thì \(\hept{\begin{cases}q=r\\p=s\end{cases}}\)
Tới đây thì không biết đi sao nữa :D
thôi bỏ bài này đi cũng được vì chưa tới lúc cần dung phương trình
1. Determine all pairs of integer (x;y) such that \(2xy^2+x+y+1=x^2+2y^2+xy\)
2. Let a,b,c satisfies the conditions
\(\hept{\begin{cases}5\ge a\ge b\ge c\ge0\\a+b\le8\\a+b+c=10\end{cases}}\)
Prove that \(2a^2+b^2+c^2\le38\)
3. Let a nad b satis fy the conditions
\(\hept{\begin{cases}a^3-6a^2+15a=9\\b^3-3b^2+6b=-1\end{cases}}\)
Find the value of\(\left(a-b\right)^{2014}\) ?
4. Find the smallest positive integer n such that the number \(2^n+2^8+2^{11}\) is a perfect square.