Cho A=12n+1/2n+3. Tìm số nguyên n để A thuộc Z
Cho 12n+1/2n+3 tìm n để
a,12n+1/2n+3 là 1 số nguyên
b, 12n+1/2n+3 là 1 phân số
a) Ta có: \(\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
Để \(\frac{12n+1}{2n+3}\)là số nguyên thì \(\frac{17}{2n+3}\)là số nguyên
=> 2n+3\(\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có bảng
2n+3 | -17 | -1 | 1 | 17 |
n | -10 | -2 | -1 | 7 |
Bài 1
Cho A = n-2/n+3 ( n thuộc Z)a, tìm n để A là phân số
b, Tìm n để a nguyên
c, tìm n để A đạt giá trị lớn nhất
Bài 2
Cho A = 10*n/5*n-3.Tìm n để
a, A là phân số
b,n thuộc Z để a nguyên
c, Tìm giá trị lớn nhất của A
Bài 3
Chứng minh rằng xảy n thuộc Z ta có
a,12n+1/n-2 là phân số tối giản
b,2n-3/n-2 là phân số tối giản
c, UWCLN của ( 2n+1;3n+1)=1
Bài 4
Tìm n thuộc Z để ( n^2-n-1) chia hết cho ( n-1)
B1:
A=1/3+1/3^2+1/3^3+...+1/3^100
B2:
a) Cho phân số A=n+3/n-5(n thuộc Z).Tìm A để nhận giá trị nguyên
b) Cho phân số B=1-2n/n+3(n thuộc Z).Tìm B để nhận giá trị nguyên
Trả lời nhanh giúp mình với!
B1:
A=1/3+1/3^2+1/3^3+...+1/3^100
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99
3A - A = 1 - 1/3^100 = 2A
A = (1 - 1/3^100)/2
B2:
a)
để A nguyên <=> n + 3 ⋮ n - 5
=> n - 5 + 8 ⋮ n - 5
=> 8 ⋮ n - 5
=> ...
b)
để B nguyên <=> 1 - 2n ⋮ n + 3
=> 4 - 2n - 3 ⋮ n + 3
=> 4 - 2(n + 3) ⋮ n + 3
=> 4 ⋮ n + 3
=> ...
Bài 1.
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A-A=2A\)
\(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^{100}}\)
\(=1-\frac{1}{3^{100}}\)
\(2A=1-\frac{1}{3^{100}}\Leftrightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)
Bài 2.
a) \(A=\frac{n+3}{n-5}=\frac{n-5+8}{n-5}=1+\frac{8}{n-5}\)
Để A là nhận giá trị nguyên
=> 8 chia hết cho n - 5
=> n - 5 thuộc Ư(8) = { ±1 ; ±2 ; ±4 ; ±8 }
n-5 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 6 | 4 | 7 | 3 | 9 | 1 | 13 | -3 |
Vậy ...
b) \(B=\frac{1-2n}{n+3}=\frac{-2n+1}{n+3}=\frac{-2\left(n+3\right)+7}{n+3}=-2+\frac{7}{n+3}\)
Để B nhận giá trị nguyên
=> 7 chia hết cho n + 3
=> n + 3 thuộc Ư(7) = { ±1 ; ±7 }
n+3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
Vậy ...
cho A=2n+1 phần 2n+3
a,tìm điều kiện của n để A là phân số
b,tìm n thuộc Z để A nguyên
Cho A=2n+1 phần 2n+3
a,tìm điều kiện của n để A là phân số
b,tìm n thuộc Z để A nguyên
a, đk để là phân số thì 2n +3 \(\ne\)0 hay n \(\ne\)-3/2
b, a nguyên tương đương với 2b +1 chia hết cho 2n +3 tách phân số ra ta đưowjc
\(1-\frac{2}{2n+3}\)=> 2n +3 thuộc ước của 2
2n+3 | 1 | 2 | -2 |
2n | -2 | -1 | -5 |
n | -1 | -0,5 | -5/2 |
còn trường hợp -1 ta có n =-2
VẬY VỚI N THUỘC { -1;-0,5;-5/2;-2} THÌ a nguyên
Cho A=4n+1/2n+3 (n thuộc Z). tìm số nguyên n để A có giá trị là một số nguyên
A=\(\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2+\frac{-5}{2n+3}\)
Để A nguyên thì \(\frac{-5}{2n+3}\) phải nguyên
=> \(2n+3\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)
=> \(n\in\left\{-1;-2;1;-4\right\}\)
Câu 1:Cho A=\(\dfrac{12n+1}{2n+3}\\\).Tìm giá trị của n để:
a)A là 1 phân số.
b)A là 1 số nguyên.
a) Để A là một phân số thì mẫu của \(A\ne0\) hay \(2n+3\ne0\)
\(\Leftrightarrow n\ne\dfrac{-3}{2}\)
b) Ta có : \(A=\dfrac{12n+1}{2n+3}\)
\(\Rightarrow A=\dfrac{12n+18-17}{2n+3}=\dfrac{12n+18}{2n+3}-\dfrac{17}{2n+3}\)
\(\Rightarrow A=\dfrac{6\left(2n+3\right)}{2n+3}-\dfrac{17}{2n+3}=6-\dfrac{17}{2n+3}\)
Để \(A\in Z\Leftrightarrow\dfrac{17}{2n+3}\in Z\)
\(\Leftrightarrow2n+3\in U\left(17\right)\)
mà \(U\left(17\right)=\left(1;-1;17;-17\right)\)
\(\Rightarrow n\in\left(-1;-2;7;-10\right)\)
Vậy \(A\in Z\Leftrightarrow n\in\left(-1;-2;7;-10\right)\)
Bài tập: Cho A=2n+1/n+2
a Tìm n thuộc Z để A là phân số
b Tính giá trị của A khi n= -3
c Tìm n thuộc Z để A là phân số tối giản
d Tìm n thuộc Z để A là 1 số nguyên
a, tìm n thuộc Z để 2n-1 chia hết cho n+1
b, tìm số nguyên n sao cho 2n-1 là bội của n+3