Cho các số nguyên a,b,c,d. Biết: a < 2b, b < 3c, c < 4d, d < 5
Tìm GTLN của a
Cho các số nguyên a,b,c,d. Biết: a < 2b, b <3c, c < 4d, d < 5
Tìm GTLN của a
tao chỉ làm bừa thôi , đúng thì đúng mà sai thì thôi đừng có tích sai cho tao :) cho t sủa lại cái đề nhé :)) sửa lại cái dấu < \(a\le2b:b\le3c:c\le4d:d\le5.\)
có Max của D là 5 dấu = xảy ra khi D=5
thay vào \(c\le4.5\Leftrightarrow c\le20\)
suy ra Max của C là 20 dấu = xảy ra khi C=20
thay vào \(b\le3c\Leftrightarrow b\le3.20\Leftrightarrow b\le60\)
Max của B là 60 dấu = xảy ra khi B = 60
thay vào : \(a\le2b\Leftrightarrow a\le2.60\Leftrightarrow a\le120\)
suy ra max của A là 120 :)) theo định lí six path of Pain
>>> Pain Thiên Đạo: ko sửa đề lung tung nhé
Tham khảo: ta có d< 5 => c< 4.5=20.
Lại theo gt b < 3c => b < 3.20 = 6c .
Lại tiếp ta có a < 2b => a < 2.60 = 120 .
Vậy Max a = 119
Nguồn: Aiko Aki
Mình lại nghĩ như thế này nè
Để a đạt GTLN thì có phải b phải đạt giá trị lớn nhất
Mà b đạt GTLN khi c đạt GTLN
Mà c đạt GTLN khi d đạt GTLN.
Vậy tóm gọn lại a đạt GTLN khi d đạt giá trị lớn nhất.
Mình xét: \(c< 4d\)mà d là số tự nhiên nên d chia hết cho 4 (1)
Xét \(b< 3c\)c chia hết cho 3
Xét \(a< 2b\)thì b chia hết cho 2
Từ (1) và d<5 thì
d đạt GTLN khi \(d=4\)
Khuc sau này bn tự tìm nha
KQ ra: GTLN của a là 88.
~~ Hết ~~
Tìm các số nguyên a,v,c,d,e,biết tổng của chúng bằng 0 và a+b=c+d=d+e=2
Tìm các số nguyên x,y,z biết x+y+z=0;x+y=3;y+z=-1
Cho a, b, c là các số thực dương. Tìm giá trị nhỏ nhất của A biết:
\(A=\frac{1}{4a+2b+\sqrt[4]{2bc}}-\frac{4}{8+a+2b+3c}+\frac{1}{4+b+2c}\)
Bài 1: Ba phân số tối giản có tổng bằng \(\frac{213}{70}\)các tử của chúng có tỉ lệ vs 3;4;5, các mẫu của chúng tỉ lệ vs 5;1;2.
Tìm 3 phân số đó
Bài 2: Tìm số tự nhiên n có hai chữ số biết rằng 2 số 2n+1 và 3n+1 đồng thời là số chính phương.
Bài 3: Tìm 3 số tự nhiên a;b;c biết \(\frac{3a\:-\:2b}{5}=\frac{2c\:\:-\:5a}{3}=\frac{5b\:-\:3c}{2}\)và a + b + c = -50
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
bài 2
Giải:
Gọi 2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)
10≤n≤99⇒21≤2n+1≤19910≤n≤99⇒21≤2n+1≤199
⇒21≤a2≤199⇒21≤a2≤199
Mà 2n + 1 lẻ
⇒2n+1=a2∈{25;49;81;121;169}⇒2n+1=a2∈{25;49;81;121;169}
⇒n∈{12;24;40;60;84}⇒n∈{12;24;40;60;84}
⇒3n+1∈{37;73;121;181;253}⇒3n+1∈{37;73;121;181;253}
Mà 3n + 1 là số chính phương
⇒3n+1=121⇒n=40⇒3n+1=121⇒n=40
Vậy n = 40
a) Tìm tất cả các số nguyên a biết : (6a+1) chia hết (3a-1)
b) Tìm hai số nguyên a,b biết: a>0 và a(b-2)=3
c) Tìm số nguyên n sao cho 2n-1 là bội của n+3
cho A là số có 2 chữ số . B=tổng các chữ số của A,C=tổng các chữ số của B . Tìm A,B,C biết A=B+C+44
cho A+B+C=69. biết tổng các chữ số của A bằng B, tổng các chữ số của B bằng C. Tìm A
Cho A+B+C=69. biết tổng các chữ số của A bằng B, tổng các chữ số của B bằng C. Tìm A ?
Tìm các số nguyên a , biết :
a/ a+2 là ước của 7
b/ 2a+5 chia hết cho a-2
c/ a^2 +3a +1 chia hết cho a+2
d/ n^2-7 phần n+3 ( nhận giá trị nguyên )