phân tích đa thức thành nhân tử
a) \(3x^2-7x+2\)
b)\(a\left(x^2+1\right)-x\left(a^2+1\right)\)
phân tích đa thức thành nhân tử a)\(3x^2-7x+2\) b)\(a\left(x^2+1\right)-x\left(a^2+1\right)\)
a) \(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) \(a\left(x^2+1\right)-x\left(a^2+1\right)\)
\(=ax^2+a-a^2x-x\)
\(=ax\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(ax-1\right)\)
Phân tích đa thức sau thành nhân tử:
\(a\left(b^2+c^2\right)-b\left(a^2+c^2\right)+c\left(a^2+b^2\right)-2ab\)
phân tích đa thức thành nhân tử
\(\left(x^2-x+6\right)^2+\left(x+3\right)^2\)
đúng đó ma tốc độ ,ai cùng ý kiến vs mk thì tick nha
chắc chắn ko ra bạn làm thử đi
Phân tích đa thức thành nhân tử
\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ac}-2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Giải giúp mình với ạ
Phân tích đa thức thành nhân tử:
a) \(x^4+3x^3+x^2+3x\)
b) \(x^4+x^2-27x-9\)
c) \(x^2-xy-x+y\)
d) \(xy+y-2\left(x+1\right)\)
e) \(5\left(x-y\right)+ax-ay\)
a: \(x^4+3x^3+x^2+3x\)
\(=x\left(x^3+3x^2+x+3\right)\)
\(=x\left(x+3\right)\left(x^2+1\right)\)
c: \(x^2-xy-x+y\)
\(=x\left(x-y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x-1\right)\)
Phân tích đa thức sau thành nhân tử
\(x^2\left(y-z\right)+y^y\left(z-x\right)+z^2\left(x-y\right)\)
5x+3 là số chẵn, 5y+4 là số lẻ. Phân tích 516 = 2x2x3x43
do đó, 5y+4 = 129, vậy y=3
5x+3 = 4, nên x=0
phân tích đa thức thành nhân tử
a)\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
b)\(6x^5+15x^4+20x^3+15x^2+6x+1\)
PLEASE !!! GIÚP MK VS MK CẦN RẤT GẤP LÀM ƠN!!!
a, = [(x-2).(x+1)]^2+(x-2)^2
= (x-2)^2.(x+1)^2+(x-2)^2
= (x-2)^2.[(x+1)^2+1]
= (x-2)^2.(x^2+2x+2)
Tk mk nha
b) \(6x^5+15x^4+20x^3+15x^2+6x+1\)
\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)
\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)
\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)
Phân tích đa thức thành nhân tử :
1) \(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
2)\(B=2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
3)\(\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)
Phân tích đa thức sau thành nhân tử: \(x^3\left(x^2-7\right)^2-36x\)
\(x^3\left(x^2-7\right)^2-36x\)
\(=x.\left[x^2.\left(x^2-7\right)^2-36\right]\)
\(=x.\left[\left(x^3-7x\right)^2-6^2\right]\)
\(=x.\left(x^3-7x-6\right).\left(x^3-7x+6\right)\)
\(=x.\left(x+1\right)\left(x^2-x-6\right).\left(x-1\right).\left(x^2+x-6\right)\)
\(=x.\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x-1\right).\left(x-2\right).\left(x-3\right)\)
Ta có : \(x^3\left(x^2-7\right)^2-36x\)
= \(x^3\left(x^4-14x^2+49\right)-36x\)
= \(x\left(x^6-14x^4+49x^2-36\right)\)
= \(x\left(x^2-1\right)\left(x^2-4\right)\left(x^2-9\right)\)---- chỗ này tắt
= (x-3)(x-2)(x-1)x(x+1)(x+2)(x+3)
\(x\left(x^2\left(x^2-7\right)^2-6^2\right)=x\left(x^3-7-6\right)\left(x^3-7+6\right)=x\left(x^3-13\right)\left(x^3-1\right)\)