Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khổng Minh Ái Châu
Xem chi tiết
Khổng Minh Ái Châu
30 tháng 3 2023 lúc 20:11

ai trả lời đúng mình tặng coin

 

Berry2k12
6 tháng 5 lúc 21:30

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5                             (1)

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S <  4/5                             (2)

Từ (1) và (2) => 3/5 <S<4/5

Trần Hải Băng
Xem chi tiết
Trần Hải Băng
Xem chi tiết
Akai Haruma
19 tháng 10 lúc 16:28

Lời giải:

$S=(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50})+(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60})$

$> \frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}> \frac{36}{60}=\frac{3}{5}$

Mặt khác: 

$S=(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50})+(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60})$

$< \frac{10}{30}+\frac{10}{40}+\frac{1}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}$

Senju Hashirama
Xem chi tiết
Nguyễn Đoàn Hồng Thái
Xem chi tiết
khánh toàn nguyễn
Xem chi tiết
Nguyễn Lâm Bằng
Xem chi tiết
Đoàn Đức Hà
18 tháng 5 2021 lúc 13:13

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)\)

\(< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+...+\frac{1}{50}\right)\)

\(=\frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)

Khách vãng lai đã xóa
Lâm Hồng Kiên
Xem chi tiết
Nguyễn Minh Trang
16 tháng 4 2022 lúc 2:21

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5                             (1)

 

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S <  4/5                             (2)

Từ (1) và (2) => 3/5 <S<4/5 Chúc bạn học tốt !

Minh Hiếu
16 tháng 4 2022 lúc 5:29

Tham khảo:

 
bảo
Xem chi tiết
Carthrine
10 tháng 3 2016 lúc 19:39

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự ta có : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Mà khi đó ta thấy: (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5                             (1)

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Do : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S <  4/5                             (2)

Từ (1) và (2) => 3/5 <S<4/5