Cho tam giác ABC vuông cân tại A. Vẽ ra phía ngoài tam giác đều ABD và ACE. Chứng minh:
a) BE=CD
b) BE cắt CD tại. Tính góc BIC
Cho tam giác ABC vuông cân tại A. Vẽ ra phía ngoài tam giác đều ABD và ACE.
Chứng minh
a) BE=CD
b) BE cắt CD tại I. Tính góc BIC.
Hình thì bạn tự vẽ nha: a,Do tam giác ABC là tam giác cân góc ABC=góc ACB(1)
Lại có tam giác ABD và tam giác ACE là 2 tam giác cân,AB=AC(giả thiết)
tam giác ABD=tam giác ACE
góc DBA=góc ECA(2)
Từ (1) và (2) góc DBA+ góc ABC= góc ACE+ góc ACB Hay góc DBC=góc ECB
Xét tam giác DBC và tam giác CEB:
Tam giác ABD=tam giác ACE(chứng minh trên),và là 2 tam giác cân DB=CE
Góc DBC=góc ECB(chứng minh trên)
Chung BC
tam giác DBC=tam giác CBE
am giác ABC vuông tại A. Vẽ ra phía ngoài của tam giác 2 tam giác đều ABD,ACE
a, Chứng minh BE=CD
b,Gọi I là giao điểm của BF và CD. Tính góc BIC.
a: Xet ΔBAE và ΔDAC có
BA=DA
góc BAE=góc DAC(=150 độ)
AE=AC
=>ΔBAE=ΔDAC
=>BE=DC
b: Gọi F là giao của AB và CD
Xét ΔADF và ΔIBF có
goc ADF=góc FBI
góc AFD=góc BFI
=>ΔADF đồng dạng với ΔFBI
=>góc DAF=góc BIF=60 độ
=>góc BIC=120 độ
Cho tam giác ABC vuông cân ở A . Vẽ ra phía ngoài tam giác ABC là 2 tam giác đều ABD và ACE
a) Chứng minh : BE=CD
b) Gọi I là giao điểm của BE và CD. Tính góc BIC
6trfyhehrdtftygqae4rt6yhtyfgctgtrftyghytgh
a: Xet ΔBAE và ΔDAC có
BA=DA
góc BAE=góc DAC(=150 độ)
AE=AC
=>ΔBAE=ΔDAC
=>BE=DC
b: Gọi F là giao của AB và CD
Xét ΔADF và ΔIBF có
goc ADF=góc FBI
góc AFD=góc BFI
=>ΔADF đồng dạng với ΔFBI
=>góc DAF=góc BIF=60 độ
=>góc BIC=120 độ
cho tam giác ABC vuông cân tại A. Vẽ về phía ngoài của tam giác đó 2 tam giác đều ABD và ACE, I là giao điểm của BE và CD. Tính góc BIC
Gọi F là giao điểm của AB và CD
Xét tam giác ADC và tam giác ABE có
AD=AB,góc BAC= góc BAE(=60 +90),AC=AE
=>Tam giác ADC= tam giác ABE=> góc ADC= góc ABE
Xét tam giac ADF và tam giác FBI có
góc ADF= góc FBI, góc AFD= góc BFI=>\(\widehat{DAF=\widehat{FIB}}\)=90
mà \(\widehat{BIC}\)\(=180-\widehat{FIB}\Rightarrow\widehat{BIC}=180-90=90\)
a: Xet ΔBAE và ΔDAC có
BA=DA
góc BAE=góc DAC(=150 độ)
AE=AC
=>ΔBAE=ΔDAC
=>BE=DC
b: Gọi F là giao của AB và CD
Xét ΔADF và ΔIBF có
goc ADF=góc FBI
góc AFD=góc BFI
=>ΔADF đồng dạng với ΔFBI
=>góc DAF=góc BIF=60 độ
=>góc BIC=120 độ
1. Cho tam giác đều ABC.Vẽ ra phía ngoài hai tam giác vuông cân ABD và ACE tại D và E. Gọi I là giao điểm của BE và CD a) CM: BE=CD b)Tính góc BIC
Sửa đề: vuông cân tại A
a: Xét ΔADC và ΔABE có
AD=AB
góc DAC=góc BAE
AC=AE
=>ΔADC=ΔABE
=>DC=EB
b: AD vuông góc AC
AE vuông góc AB
góc ADC=góc ABE
=>EB vuông góc CD
1. Cho tam giác ABC vuông cân ở A . Vẽ ra phía ngoài của tam giác 2 tam giác đều ABD và ACE.
a) CM: BE=CD
b)Gọi I là giao điểm của BE và CD. Tính góc BIC
Vì \(\Delta ABC\)cân nên AB=AC
\(\Delta ADB\)đều nên AD=BD=AB
\(\Delta ACE\)đều nên AC=CE=AE
=>AB=AC=AD=BD=CE=AE
a)Xét \(\Delta DAC\)và \(\Delta BAE\)có:
BA=AD
\(\widehat{DAC}=\widehat{BAE}\)(=90o+60o)
AD=AE
=>\(\Delta DAC=\Delta BAE\)(c.g.c)
=> BE=CD ( cặp cạnh tương ứng) (đpcm)
a: Xet ΔBAE và ΔDAC có
BA=DA
góc BAE=góc DAC(=150 độ)
AE=AC
=>ΔBAE=ΔDAC
=>BE=DC
b: Gọi F là giao của AB và CD
Xét ΔADF và ΔIBF có
goc ADF=góc FBI
góc AFD=góc BFI
=>ΔADF đồng dạng với ΔFBI
=>góc DAF=góc BIF=60 độ
=>góc BIC=120 độ
Cho tam giác ABC, về phía ngoài tam giác dựng các tam giác ABD và ACE vuông cân tại A. BE cắt CD tại I tính góc BIC
Tam giác ABC vuông tại A. Vẽ ra phía ngoài của tam giác 2 tam giác đều ABD,ACE
a, Chứng minh BE=CD
b,Gọi I là giao điểm của BF và CD. Tính góc BIC.
Ai làm đúng và nhanh nhất mình sẽ tick
a: Xet ΔBAE và ΔDAC có
BA=DA
góc BAE=góc DAC(=150 độ)
AE=AC
=>ΔBAE=ΔDAC
=>BE=DC
b: Gọi F là giao của AB và CD
Xét ΔADF và ΔIBF có
goc ADF=góc FBI
góc AFD=góc BFI
=>ΔADF đồng dạng với ΔFBI
=>góc DAF=góc BIF=60 độ
=>góc BIC=120 độ
Cho tam giác ABC vuông cân ở A.Vẽ ra phía ngoài của tam giác 2 tam giác đều ABD, ACE
a) Chứng minh: BE=CD
b) Gọi I là giao của BE và CD.Tính góc BIC
a: Xet ΔBAE và ΔDAC có
BA=DA
góc BAE=góc DAC(=150 độ)
AE=AC
=>ΔBAE=ΔDAC
=>BE=DC
b: Gọi F là giao của AB và CD
Xét ΔADF và ΔIBF có
goc ADF=góc FBI
góc AFD=góc BFI
=>ΔADF đồng dạng với ΔFBI
=>góc DAF=góc BIF=60 độ
=>góc BIC=120 độ
Cho tam giác ABC, đường cao AH. vẽ ra phía ngoài của tam giác ABC các tam giác vuông cân ABD, ACE, góc ABD = góc ACE =90o
a, Qua C vẽ đường thẳng vuông góc với BE cắt đường thẳng AH tại K. Chứng minh CD vuông góc với BK
b, Chứng minh 3 đường thẳng AH,BE,CD đồng quy