tìm x biết
a,(2x - 1 )^3 = (2x - 1) ^5
Tìm x, biết
a)(2x-1)^5-(2x-1)^8=0
b)(2x+1). (2x-3)<0
c)(x-1). (2x+3)>0
Tìm x biết:
a) 3(2x-1)(3x-3)-(2x-1)(3x-3)=-3
b) (3x-1)(2x+7)-(x+1)(6x-5)=x+2-(x+5)
,Tìm x, biết:
a, 3|x+4| - |2x+1| = 5
b, |x+5| - 3|2x+5| = 8
c,3|2x-3| - 6|x-1| = 3
Tìm x, biết:
a) |2x + 1| = 17
b) |3x − 17| = |2x − 3|
c) |x − 5| = 2x
d) |x − 1| + |x − 5| = 3
c) l x - 5 l = 2x
\(\Leftrightarrow\orbr{\begin{cases}x-5=2x\\x-5=-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2x=5\\x+2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=5\\3x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}\)
Hok tốt!!!!!!!
Tìm x, biết:
a) |2x + 1| = 17
<=>\(\orbr{\begin{cases}2x+1=17\\2x+1=-17\end{cases}}\)
<=>\(\orbr{\begin{cases}2x=16\\2x=-18\end{cases}}\)
<=> \(\hept{\begin{cases}x=8\\x=-9\end{cases}}\)
Phần d không biết , thông cảm
a) Ta có :
| 2x + 1 | = 17
\(\Rightarrow\orbr{\begin{cases}2x+1=17\\2x+1=-17\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=16\\2x=-18\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=-9\end{cases}}\)
b) | 3x - 17 | = | 2x - 3 |
Xét các trường hợp :
+) 3x - 17 = - 2x + 3
=> 3x + 2x = 3 + 17
=> 5x = 20
=> x = 4
+) 3x - 17 = 2x - 3
=> 3x - 2x = -3 + 17
=> x = 14
+) -3x + 17 = 2x - 3
=> 2x + 3x = 17 + 3x
=> 5x = 20
=> x = 4
c) | x - 5 | = 2x
\(\Rightarrow\orbr{\begin{cases}x-5=2x\\x-5=-2x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-x=5\\3x=5\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=\frac{5}{3}\end{cases}}\)
5: Tìm x biết a) x/3 =4/12 b) x-1/ x-2=3/5 c) 2x :6=1/4 d) x² +x/2x²+1=1/2
a) \(\dfrac{x}{3}=\dfrac{4}{12}\Rightarrow x=\dfrac{4}{12}\cdot3=\dfrac{12}{12}=1\)
b) \(\dfrac{x-1}{x-2}=\dfrac{3}{5}\) (Điều kiện : \(x\ne2\))
\(\Rightarrow5\left(x-1\right)=3\left(x-2\right)\)
\(\Leftrightarrow5x-5=3x-6\Leftrightarrow5x-3x=-6+5\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
c) \(2x:6=\dfrac{1}{4}\Leftrightarrow2x=\dfrac{1}{4}\cdot6=\dfrac{6}{4}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{2}:2=\dfrac{3}{2}\cdot\dfrac{1}{2}=\dfrac{3}{4}\)
d) \(\dfrac{x^2+x}{2x^2+1}=\dfrac{1}{2}\)
\(\Rightarrow2\left(x^2+x\right)=2x^2+1\)
\(\Leftrightarrow2x^2+2x=2x^2+1\)
\(\Leftrightarrow2x^2+2x-2x^2=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\).
tìm x biết
a,2x-5=3+2x-7x
c,(2x-1)^2 )=(2x-1)^5
b,1/5×-3y=4-3y
d,3×(2x+5)-4×(x-7)=8×(2-3x)
a) 2x-5=3+2x-7x
2x-2x+7x=3+5
7x=8
x=8/7
vậy x=8/7
a) 2x - 5 = 3 + 2x - 7x
=> 2x - 2x + 7x = 3 +5
=> 7x = 8
=> x = 8/7
b) \(\left(2x-1\right)^2=\left(2x-1\right)^5\)
=> \(\left(2x-1\right)^2-\left(2x-1\right)^5=0\)
=> \(\left(2x-1\right)^2\left[1-\left(2x-1\right)^3\right]=0\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)^3=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^3=1\end{cases}}\)
=> \(\orbr{\begin{cases}2x=1\\2x-1=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
Tìm x biết:
a,5/x-3=3/x+5
b,2x-1/3=7/27(2x+1)
BT1: cho -3x(x+5)=-3x2-15x
(x+3)(x+2)=x2+5x+6
Tìm x biết:
--3x(x+5)+(x+3)(x+2)=7
BT2:Cho(2x+1)2=4x2+4x+1
(2x+1)(2x-1)=4x2-1
Tìm x biết:
(2x+1)2-(2x+1)(2x-1)=19
BT3: Tìm x biết:
a)x(x+1)-x(x+5)=9
b)4x2(x+5)-8x(x+7)=13
1, Tìm x thuộc Z biết :
a,2x - ( -5) = x- 4
b,- ( 2x+3) -x =2x -(- 3- 6)
c, (2x -3) -(2x +5) =6
d, I x I =3
e, I x -1 I-1 =3
g, Ix +1 =3 ( a thuộc Z )
Tìm x biết:
a; 3x.(2x+3)-(2x+5x).(3x-2)=8
b;4.(x-1)-3.(x^2-5)_x^2=(x-3)-(x+4)
c; 2.(3x-1).(2x+5)-6.(2x-1).(x+2)=-6
d; 3.(2x-1).(3x-1)-(2x-3.(9x-1)-3=3