Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bá Đô
Xem chi tiết
Nguyễn Khánh Huyền Linh
Xem chi tiết
Hoàng C5
13 tháng 12 2016 lúc 10:59

1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2

2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên

=>n+1;2n+3 chia hết cho a

=>2.(n+1);2n+3 chia hết cho a

=>2n+2;2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=>1 chia hết cho a

=>a=1

=>n+1 và 2n+3 là hai số nguyên tố cùng nhau

Nguyễn Mỹ Hạnh
Xem chi tiết
Linh Nhi
4 tháng 8 2017 lúc 10:41

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

Nguyễn Mỹ Hạnh
4 tháng 8 2017 lúc 13:37

cảm ơn bạn nha

mình k cho ban roi do

lê thu uyên
Xem chi tiết
son goku
Xem chi tiết
Minh Nguyệt
Xem chi tiết
T.Anh 2K7(siêu quậy)(тoá...
4 tháng 8 2020 lúc 13:44

bạn ơi có thiếu đề ko vậy.Nhỡ đâu 2^n-1=2 là SNT thì n có phải là số nguyên tố đâu

Khách vãng lai đã xóa
Minh Nguyệt
5 tháng 8 2020 lúc 21:00

không nha bạn, cho 2n-1 là số nguyên tố nghĩa là trường hợp nó là số nguyên tố ý

Khách vãng lai đã xóa
T.Anh 2K7(siêu quậy)(тoá...
5 tháng 8 2020 lúc 21:36

ok

Giả sử n là hợp số.Suy ra n=p.q(q,p>1 và thuộc n)

Ta có:\(2^n-1=2^{p.q}-1\Rightarrow\hept{\begin{cases}2^{p.q}-1=\left(2^p\right)^q-1⋮2^p-1>1\\2^{p.q}-1=\left(2^q\right)^p-1⋮2^q-1>1\end{cases}}\)

Mà 2^p.q-1>2^p-1 và 2^q-1 nên 2^q.p-1 là hơp số (Vô lý)

Vậy điều giả sử trên là sai,vậy 2^n-1 là SNT thì n là SNT

ok nha

Khách vãng lai đã xóa
Nguyễn Vân Hương
Xem chi tiết
Đỗ Thanh Hà
Xem chi tiết
Nguyễn Thùy Linh
5 tháng 1 2017 lúc 13:10

Gọi ước chung lớn nhất của 2 số là d

TA có : n+3 chia hết cho d

n+ 1 chia hết cho d

=> (n+3)-(n+1) chia hết cho d

=> 2 chia hết cho đ

=> d thuộc Ư(2)

=> d thuộc { 1;2}

Mak n+ 1 và n+ 3 là 2 số lẻ nên d=1

Vậy n+ 3 và n+ 1 là 2 só nguyên tố cùng nhau

Duyệt đi , chúc bạn hk giỏi

Đỗ Thanh Hà
5 tháng 1 2017 lúc 13:15

Cám ơn bạn nhìu nhak

Nguyễn Thùy Linh
5 tháng 1 2017 lúc 20:03

kcj , tk mk đi

Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Nguyễn Mỹ Hạnh
Xem chi tiết
Lèo thị thu lệ
25 tháng 11 lúc 20:05

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿