Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Harry Potter
Xem chi tiết
Trần Minh Hương
31 tháng 12 2016 lúc 21:06

Trời ơi ! Chán quá chẳng hiểu cái gì cả

Nguyễn Văn Phong
31 tháng 12 2016 lúc 21:15

=0

mk ko biết cách tính xin lỗi

nguyen mai anh
Xem chi tiết
Bây Âu Thị
9 tháng 4 2016 lúc 20:26

2. để Bmax thì x+2/3 đạt GTNN=> x+2/3=0=>x=-2/3

3. 4x=21

    4x=-21 tự tính

x-1.5=2

x-1.5=-2

x+3/4=1/2

x+3/4=-1/2

Zz Yuki Nora zZ
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Trần Ái Linh
23 tháng 7 2021 lúc 15:59

1) `(x-3)^4 >=0`

`2.(x-3)^4>=0`

`2.(x-3)^4-11 >=-11`

`=> A_(min)=-11 <=> x-3=0<=>x=3`

2) `|5-x|>=0`

`-|5-x|<=0`

`-3-|5-x|<=-3`

`=> B_(max)=-3 <=>x=5`.

Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 0:49

Bài 1: 

Ta có: \(\left(x-3\right)^4\ge0\forall x\)

\(\Leftrightarrow2\left(x-3\right)^4\ge0\forall x\)

\(\Leftrightarrow2\left(x-3\right)^4-11\ge-11\forall x\)
Dấu '=' xảy ra khi x=3

Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 0:50

Bài 2: 

Ta có: \(\left|5-x\right|\ge0\forall x\)

\(\Leftrightarrow-\left|5-x\right|\le0\forall x\)

\(\Leftrightarrow-\left|5-x\right|-3\le-3\forall x\)

Dấu '=' xảy ra khi x=5

Shizuka Chan
Xem chi tiết
Akai Haruma
28 tháng 7 2024 lúc 22:53

Lời giải:

Ta có:

$(x-1)^2\geq 0,\forall x$

$|3-y|\geq 0, \forall y$

$\Rightarrow (x-1)^2+|3-y|\geq 0$

$\Rightarrow (x-1)^2+|3-y|-35\geq -35$

$\Rightarrow P=-[(x-1)^2+|3-y|-35]\leq 35$

Vậy $P_{\max}=35$. 

Giá trị này đạt tại $(x-1)^2=|3-y|=0$

$\Leftrightarrow x=1; y=3$

Seohyun
Xem chi tiết
ZzZ Love Mizuno Ami and...
Xem chi tiết
lê phương thảo
Xem chi tiết
Nguyễn Thùy Nhung
Xem chi tiết