phan tich da thuc thanh nhan tu a, (3x+1)^2-(x+1)^2
b, 6x-6y-x^2+xy
phan tich da thuc thanh nhan tu : a) 3x^2 - 22xy + 4x + 8y + 7x^2 + 1 ; b) 12x^2 + 5x - 12y^2 + 12y - 10xy - 3 ; c)x^4 + 6x^3 + 11x^2 + 6x + 1
phan tich da thuc thanh nhan tu
a: 4x^2-20xy +25-[3x-2]^2
b: x^2-6x+5+[x-5]^2
\(x^2-6x+5+\left(x-5\right)^2\)
\(=x^2-6x+5+x^2-10x+25\)
\(=2x^2-6x-10x+30\)
\(=x.\left(2x-6\right)-5.\left(2x-6\right)\)
\(=\left(x-5\right).\left(2x-6\right)\)
phan tich da thuc thanh nhan tu
5x+ 7$\sqrt xy $ -6y+$\sqrt x $ - 2$\sqrt y $
phan tich da thuc thanh nhan tu
x^2 + 4y^2 +3x - 6y
giai dum mik vs
\(x^2+4y^2+3x-6y=\left(x^2+3x\right)-\left(4y^2+6y\right)=x\left(x+3\right)-2y\left(2y+3\right)\)
phan tich cac da thuc sau thanh nhan tu theo mau:
2x^3-x
5x^2(x-1)-15x(x-1)
3x^2y^2+12x^2y-15x-y^2
3x(x-2y)+6y(2y-x)
phan tich cac da thuc sau thanh nhan tu theo mau:
a)\(2x^3-x\)
\(=x\left(2x^2-1\right)\)
\(=x\left(\left(\sqrt{2}x\right)^2-1^2\right)\)\
\(=x\left(\sqrt{2}x-1\right)\left(\sqrt{2}x+1\right)\)
b)\(5x^2\left(x-1\right)-15x\left(x-1\right)\)
\(=\left(5x^2-15x\right)\left(x-1\right)\)
\(=5x\left(x-3\right)\left(x-1\right)\)
d)\(3x\left(x-2y\right)+6y\left(2y-x\right)\)
\(=3x\left(x-2y\right)-6y\left(x-2y\right)\)
\(=\left(3x-6y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)^2\)
Phan tich da thuc sau thanh nhan tu
6x^3+x^2+x+1
\(6x^3+x^2+x+1=\left(6x^3+3x^2\right)+\left(-2x^2-x\right)+\left(2x+1\right)\)
\(=3x^2.\left(2x+1\right)-x.\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(3x^2-x+1\right)\)
K sai dau
giao an truong Tran dai nghia do
Phan tich da thuc thanh nhan tu
( x^2-6x+ 8)( x^2-8x +15) +1
phan tich da thuc thanh nhan tu 1-3x-x^3+3x^2
\(1-3x-x^3+3x^2\)\(=\left(1-x^3\right)+\left(3x^2-3x\right)\)
\(=\left(1-x\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-x^2-x-1\right)=\left(x-1\right)\left(2x-x^2-1\right)\)
Phan tich da thuc thanh nhan tu
(xy-1)^2 -x^2-y^2