cho x,y,z là các số tự nhiên thoả mãn: x+y+z=2009. tìm Max M= xyz
x,y,z là các số tự nhiên tm x+y+z=2017 . Tìm max(xyz)
Vì x, y, z là số tự nhiên nên không mất tính tổng quát ta giả sử:
\(x\ge y\ge z\ge0\)
\(\Rightarrow x=2017-y-z\ge2017-0-0=2017\)
Vậy GTLN là 2017 đạt được khi \(\hept{\begin{cases}x=2017\\y=z=0\end{cases}}\) và các hoán vị của nó
Ở trên a ghi nhầm dấu \(\le\) thành dấu \(\ge\) e sửa hộ a nhé
ta sẽ chứng minh rằng max của P = xyz đạt được khi các giá trị x, y, z hơn kém nhau không quá 1 đơn vị.
thật vậy, giả sử x0, y0,z0 là các giá trị để P đạt max(tức Max P = x0y0z0) và x0 - y0 \(\ge\) 1 hay x0 - y0 - 1 \(\ge\)1
xét các giá trị x1 = x0 - 1; y1 = y0 + 1, z1 = z0.
khi đó P = z0.(x0 - 1)(y0 +1) = z0(x0y0 +x0 - y0 - 1) > x0y0z0. (vô lí vì x0y0z0 là max P).
vậy khi đó x0, y0, z0 hơn kém nhau không quá 1 đơn vị hay x0 = 672, y0 = 672, z0 = 673. từ đó suy ra maxP.
cho các số dương x,y,z thoả mãn x+y+z=1 Tìm GTNN của biểu thức M=(x+y)/xyz
\(M=\frac{x+y}{xy}.\frac{1}{z}\ge\frac{2\sqrt{xy}}{xy}.\frac{1}{z}=\frac{2}{z\sqrt{xy}}\ge\frac{2}{z\left(\frac{x+y}{2}\right)}=\frac{4}{z\left(x+y\right)}\)
\(=\frac{4}{z\left(1-z\right)}=\frac{4}{\frac{1}{4}-\left(z-\frac{1}{2}\right)^2}\ge16\)
Min M= 16 khi z=1/2 và x=y =1/4.
cho x,y,z là các số tự nhiên thỏa mãn x+y+z=2017. tìm giá trị lớn nhất của P = xyz
Có : với 2 số có tổng không đổi , tích của chúng lớn nhất <=> 2 số đó = nhau(tính chất)(3 số cũng vậy nha :))
=> max P <=> x=y=z=672,(3); nhưng x ; y ; z thuộc N
=> 2 số = 672 ; 1 số = 673
=> max P = 303916032
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
Tìm các số tự nhiên x,y,z thỏa mãn : x+y+z= xyz
cho x;y;z là các số thực dương thỏa mãn \(xyz\ge x+y+z+2.\)Tìm Max x+y+z
Tìm min hay tìm max thế? Max thì làm gì có.
x,y,z càng lớn thì x + y + z càng lớn mà làm gì có max
Cho x; y; z là các số thực dương thỏa mãn: \(x^2+y^2+z^2+2xyz=1\)
Tìm max của \(A=xy+yz+zx-xyz\)
Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)
Không mất tính tổng quát, giả sử đó là y và z
\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)
Mặt khác từ giả thiết:
\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)
\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)
\(\Leftrightarrow1-x\ge2yz\)
\(\Rightarrow yz\le\dfrac{1-x}{2}\)
Do đó:
\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)
\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)
\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)
Tìm các số tự nhiên x,y,z thỏa mãn
xyz = (x+y+z)^3
Cho x,y,z dương thoả mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)
Tìm Max P=xyz