A= ( x + 3 )^2 + ( x -3 ) ( x + 3 ) - 2 ( x + 2 ) ( x - 4 ) X = -1/2
a,1/3 .(x-2/5)=3/4 b, 7/3:(x-2/3)=4/5 c,1/3.(x-2/5)=4/5 d, 2/3.(x-1/2)-1/4.(x-2/5)=7/3 e,3/7 .(x-2/3)+1/2=5/4.(x-2) f,1/2.(x-3)+1/3.(x-4)+1/4.(x-5)=1/5 g,[2/3.(x-1/2)-4/5]:(x-1/3)=21/5 h, {x-[1/2.(x-3)+11/5]}:(x-1/2)=3/5 i,x.(x-2/5)-(x+2).x+11/4=4/3
a: =>x-2/5=3/4:1/3=3/4*3=9/4
=>x=9/4+2/5=45/20+8/20=53/20
b: =>x-2/3=7/3:4/5=7/3*5/4=35/12
=>x=35/12+2/3=43/12
c: 1/3(x-2/5)=4/5
=>x-2/5=4/5*3=12/5
=>x=12/5+2/5=14/5
d: =>2/3x-1/3-1/4x+1/10=7/3
=>5/12x-7/30=7/3
=>5/12x=7/3+7/30=77/30
=>x=77/30:5/12=154/25
e: \(\Leftrightarrow x\cdot\dfrac{3}{7}-\dfrac{2}{7}+\dfrac{1}{2}-\dfrac{5}{4}x+\dfrac{5}{2}=0\)
=>\(x\cdot\dfrac{-23}{28}=\dfrac{2}{7}-3=\dfrac{-19}{7}\)
=>x=19/7:23/28=76/23
f: =>1/2x-3/2+1/3x-4/3+1/4x-5/4=1/5
=>13/12x=1/5+3/2+4/3+5/4=257/60
=>x=257/65
i: =>x^2-2/5x-x^2-2x+11/4=4/3
=>-12/5x=4/3-11/4=-17/12
=>x=17/12:12/5=85/144
bài 3:
a) x - 3/4 = 6 x 3/8 b) 7/8 : x = 3 - 1/2 c) x + 1/2 x 1/3 = 3/4
d) 3/2 x 4/5 - x = 2/3 e) X x 3 1/3 = 3 1/3 : 4 1/4 f) 5 2/3 : x = 3 2/3 - 2 1/2
a) \(x-\dfrac{3}{4}=6\times\dfrac{3}{8}\)
\(x-\dfrac{3}{4}=\dfrac{9}{4}\)
=> \(x=\dfrac{9}{4}+\dfrac{3}{4}=3\)
b) \(\dfrac{7}{8}:x=3-\dfrac{1}{2}\)
\(\dfrac{7}{8}:x=\dfrac{5}{2}\)
=> \(x=\dfrac{7}{8}:\dfrac{5}{2}=\dfrac{7}{20}\)
c) \(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(x+\dfrac{1}{6}=\dfrac{3}{4}\)
=> \(x=\dfrac{3}{4}-\dfrac{1}{6}=\dfrac{7}{12}\)
d) \(\dfrac{3}{2}\times\dfrac{4}{5}-x=\dfrac{2}{3}\)
\(\dfrac{6}{5}-x=\dfrac{2}{3}\)
=> \(x=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{8}{15}\)
e) \(x\times3\dfrac{1}{3}=3\dfrac{1}{3}:4\dfrac{1}{4}\)(?)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
=> \(x=\dfrac{40}{51}:\dfrac{10}{3}=\dfrac{4}{17}\)
f) \(5\dfrac{2}{3}:x=3\dfrac{2}{3}-2\)
\(\dfrac{17}{3}:x=\dfrac{5}{3}\)
=> \(x=\dfrac{17}{3}:\dfrac{5}{3}=\dfrac{17}{5}\)
a: =>x-3/4=18/8=9/4
=>x=9/4+3/4=12/4=3
b: =>7/8:x=5/2
=>x=7/8:5/2=7/8*2/5=14/40=7/20
c: x+1/2*1/3=3/4
=>x+1/6=3/4
=>x=3/4-1/6=9/12-2/12=7/12
d: =>12/10-x=2/3
=>6/5-x=2/3
=>x=6/5-2/3=18/15-10/15=8/15
e: =>x*10/3=10/3:17/4=10/3*4/17
=>x=4/17
f: =>17/3:x=13/3-5/2=26/6-15/6=11/6
=>x=17/3:11/6=17/3*6/11=34/11
Bài 1 : a.3(x-y)^2-2(x+y)^2-(x+y)(x-y) b.3x(x-1)^2-2x(x+3)(x-3)+4x(x-4) c.(x-1)^3-(x+2)(x^2-2x+4)+3(x+4)(x-4) d.(x+2)^3-(x-2)^3
a) A = 3 ( x − y ) 2 − 2 ( x + y ) 2 − ( x − y ) ( x + y ) 2 A = [ ( x − y ) − ( x + y ) ] 2 + 5 ( x − y ) 2 − 5 ( x + y ) 2 2 A = 4 y 2 + 5 [ ( x − y ) − ( x + y ) ] [ ( x − y ) + ( x + y ) ] 2 A = 4 y 2 + 5 [ − 2 y ] [ 2 x ] = 4 y 2 − 20 x y = 4 y ( y − 5 x ) A = 2 y ( y − 5 x )
a,x+5/x-1+8/x^2-4x+3=x+1/x-3 b,x-4/x-1-x^2+3/1-x^2+5/x+1=0 c,3x/4-5=3-x/2+5x-1/6 d,(x-2)(x+2)-(x-3)(x+4)-2x+3=0 e,(x-1)^2+2(x+1)=5x+5 g,(x-3)(x+4)x=0
a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)
=>(x+5)(x-3)+8=x^2-1
=>x^2+2x-15+8=x^2-1
=>2x-7=-1
=>x=3(loại)
b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)
=>(x-4)(x+1)+x^2+3+5(x-1)=0
=>x^2-3x-4+x^2+3+5x-5=0
=>2x^2+2x-6=0
=>x^2+x-3=0
=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)
e: =>x^2-2x+1+2x+2=5x+5
=>x^2+3=5x+5
=>x^2-5x-2=0
=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)
g: (x-3)(x+4)*x=0
=>x=0 hoặc x-3=0 hoặc x+4=0
=>x=0;x=3;x=-4
a) (x+2)\(^2\)+2(x-4)=(x-4)(x-2)
b) (x+1)(2x-3)-3(x-2)=2(x-1)
c) (x+3)\(^2\)-(x-3)\(^2\)=6x+18
d) (x-1)\(^3\)-x(x+1)\(^2\)=5x(2-x)-11(x+2)
a) Ta có: \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+4x+4+2x-8=x^2-6x+8\)
\(\Leftrightarrow x^2+6x-4-x^2+6x-8=0\)
\(\Leftrightarrow12x-12=0\)
\(\Leftrightarrow12x=12\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(2x-3\right)-3\left(x-2\right)=2\left(x-1\right)\)
\(\Leftrightarrow2x^2-3x+2x-3-3x+6=2x-2\)
\(\Leftrightarrow2x^2-4x+3-2x+2=0\)
\(\Leftrightarrow2x^2-6x+5=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{5}{2}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}=0\)(Vô lý)
Vậy: \(S=\varnothing\)
c) Ta có: \(\left(x+3\right)^2-\left(x-3\right)^2=6x+18\)
\(\Leftrightarrow x^2+6x+9-\left(x^2-6x+9\right)-6x-18=0\)
\(\Leftrightarrow x^2-9-x^2+6x-9=0\)
\(\Leftrightarrow6x-18=0\)
\(\Leftrightarrow6x=18\)
hay x=3
Vậy: S={3}
d) Ta có: \(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x\left(x^2+2x+1\right)=5x-5x^2-11x-22\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=-5x^2-6x-22\)
\(\Leftrightarrow-5x^2+2x-1+5x^2+6x+22=0\)
\(\Leftrightarrow8x+21=0\)
\(\Leftrightarrow8x=-21\)
hay \(x=-\dfrac{21}{8}\)
Vậy: \(S=\left\{-\dfrac{21}{8}\right\}\)
a, x^3+x^2-x-1=0
b, x^3+x^2-4x-4=0
c,x^3+x^2+4=0
d, (x-1)^2(x--3)+(x-1)^2(x+3)
e,x^4-5x^3+5x^2+5x-6=0
a: \(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x-1\right)=0\)
=>x=-1 hoặc x=1
b: \(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
hay \(x\in\left\{-1;2;-2\right\}\)
c: \(x^3+x^2+4=0\)
\(\Leftrightarrow x^3+2x^2-x^2-2x+2x+4=0\)
\(\Leftrightarrow\left(x+2\right)\cdot\left(x^2-x+2\right)=0\)
=>x+2=0
hay x=-2
e: \(\Leftrightarrow x^4-2x^3-3x^3+6x^2-x^2+2x+3x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-3x^2-x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x+1\right)\left(x-1\right)=0\)
hay \(x\in\left\{2;3;-1;1\right\}\)
3x^4 + 3x^2y^2 + 6x^3y - 27x^2
x^4 + x^3 - x^2 + x
2x^5 - 6x^4 - 2a^2x^3 - 6ax^3
x^5 + x^4 + x^3 + x^2 + x + 1
x^3 - 1 + 5x^2 - 5 + 3x - 3
1/4.(a + 1)^2 - 4/9.(a - 2)^2
12a^2b^2 - 3.(a^2b^2)^2
4x^2y^2 - (x^2 + y^2 - a^2)^2
(a + b + c)^2 + (a + b - c)^2 - 4c^2
x^3 - 1 + 5x^2 - 5 + 3x - 3
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
1) (2+a)(2-a)(4+2a+a^2)(a^2-2a+4) 2)(x-2)^3 - x(x+1)(x-1) + 6x(x-3) 3) (x+1)^3 - ( x - 1)(x^2+x+1) -3x (x+1) áp dụng bất đẳng thức đi ạ
1: =(8+a^3)(8-a^3)=64-a^6
2: =x^3-6x^2+12x-8-x(x^2-1)+6x^2-18x
=x^3-6x-8-x^3+x
=-5x-8
3: =x^3+3x^2+3x+1-x^3+1-3x^2-3x
=2
1.Tìm x
a) (x - 5)(x + 5) - (x + 3)^2 + 3 (x - 2)^2 = (x + 1)^2 - (x + 4)(x - 4) +3x^2
b) (2x + 3)^2 + (x - 1)(x + 1) = 5 (x + 2)^2 - (x - 5)(x + 1) + (x + 4)^2
c) (-x + 5)(x - 2) + (x - 7)(x + 7) = (3x + 1)^2 - (3x - 2)(3x + 2)
d) (5x - 1)(x + 1) - 2(x - 3)^2 = (x + 2)(3x - 1) - (x + 4)^2 + (x^2 - x)
2.Rút gọn :
a) A= 3 (x - 1)^2 - (x + 1)^2 + 2(x - 3)(x + 3) - (2x + 3)^2 - (5 - 20x)
b) B= 5x (x - 7)(x + 7) - x (2x - 1)^2 - (x^3 + 4x^2 - 246x) - 175
c) C = -2x (3x + 2)^2 + (4x + 1)^2 + 2 (x^3 + 8x + 3x - 2 ) - (5 - x)