Tìm giá trị của x để căn bậc hai sau để xác định √2x-1
Cho A= căn bậc hai của x+1/căn bậc hai của x-2 . Tìm số nguyên x để A có giá trị là một số nguyên
tìm các giá trị của x để căn bậc hai có nghĩa ;
căn của x-1/x-3
Tìm điều kiện để các biểu thức sau xác định
a) căn bậc hai của 2x+4/x^2-6x+9
b) căn bậc hai của x^2+2x+3
Mng giúp em vs ak thanks
cho A=căn bậc hai của x-3/2. tìm x thuộc Zvà x<30 để A có giá trị nguyên
cho B=5/căn bậc hai của x-1. tìm x thuộc Z để B có giá trị nguyên
Tìm giá trị nguyên của x để biểu thức A = 4 căn bậc hai của x + 6/ 3 căn bậc hai của x -2
Bài 1: tìm giá trị của x để biểu thức b= 2x^2+5/2x^1 đạt giá trị nhỏ nhất
Bài 2: lập phương trình bậc hai hai nghiệm X1 và X2 thỏa mãn các hệ thức :
a) X1 +X2+X1xX2 và m(X1+X2) -X1xX2=3m+a
b) với phương trình vừa tìm được ở câu a) xác định m để phương trình có hai nghiệm trái dấu
tìm các giá trị của x để căn bậc hai có nghĩa
căn của x^2 + 3
Xác định giá trị của m để các đa thức sau là tam thức bậc hai
a) \(\left( {m + 1} \right){x^2} + 2x + m\)
b) \(m{x^3} + 2{x^2} - x + m\)
c) \( - 5{x^2} + 2x - m + 1\)
a) Ta có: \(a = m + 1\)
Để đa thức \(\left( {m + 1} \right){x^2} + 2x + m\) là tam thức bậc hai khi và chỉ khi \(m + 1 \ne 0\)
\( \Leftrightarrow m \ne - 1\)
Vậy khi \(m \ne - 1\) thì đa thức \(\left( {m + 1} \right){x^2} + 2x + m\)là tam thức bậc hai
b) Ta có: \(a = 2\)
Để đa thức \(m{x^3} + 2{x^2} - x + m\) là tam thức bậc hai khi và chỉ khi \(m = 0\)
Vậy khi \(m = 0\) thì đa thức \(m{x^3} + 2{x^2} - x + m\)là tam thức bậc hai
c) Ta có \(a = - 5\)
Hệ số c không ảnh hưởng đến tam thức bậc hai
Vậy đa thức \( - 5{x^2} + 2x - m + 1\) là tam thức bậc hai với mọi m
Q= 3x+ căn bậc 2 của 9x - 3 / x+ căn bậc hai của x - 2 - căn bậc hai của x +1 / căn bậc hai của x + 2 + căn bậc hai của x - 2/ 1 - căn bậc hai của x với x lớn hơn hoặc bằng 0 và x khác 1
a) rút gọn Q
b) Tìm giá trị của Q khi | 2x - 5 | = 3
c) Tìm các giá trị của x để Q=3
d) Tìm các giá trị của x để Q>1/2. E) Tìm x thuộc Z để Q thuộc Z