Bài 1: Tính x,y Biết x,y thuộc Z
a/ 3x + 5y + 8xy = 16
b/ x + 3xy - y = 1
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Giúp mình vs
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Bài b:
Đến đoạn này bạn xét như bài a nhé.
Bài c cũng tương tự câu b, bạn nhân 2 vào cả 2 vế, chuyển vế đổi dấu và ghép vế trái lại thành tổng các bình phương, vế phải là một số tự nhiên. Đến đoạn này cũng xét như bài a.
Còn bài d và bài e thì mình chưa biết làm thế nào, nhưng mình nghĩ vế trái sẽ là bình phương của tổng hoặc hiệu của x và y, vế phải là bình phương của tổng hoặc hiệu của y và một số nào đó. Tuy nhiên chắc là sẽ phải nhân thêm một số nào đó bởi vì nếu không nhân khi làm sẽ ra phân số, không xét được.
Giúp mình vs
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Bài 4:Tìm x, biết:
1/ (x-1)(x^2+x+1)-x^3-6x=11
2/ 16x^2-(3x-4)^2=0
3/ x^3-x^2+3-3x=0
4/ x-1/x+2=x+2/x+1
5/1/x+2/x+1=0
6/ 9-x^2/x : (x-3)=1
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)