Cho hình thoi ABCD có \(\widehat{A}\) = 60 độ và AB = 6\(\sqrt{3}\) cm. Tính diện tích hình thoi.
Hình thoi ABCD có góc A = 60o. Diện tích hình thoi là \(2\sqrt{3}\)cm2. Tính độ dài cạch AB
Cho hình thoi ABCD có góc A=60 độ, AB=10cm. Tính diện tích hình thoi ABCD.
Kẻ BH vuông góc AD
Tam giác ABH là tam giác đều nên BH=AD=10(cm)
Suy ra SABCD=10.10=100(cm2)
Cho hình thoi ABCD có \(\widehat{A}=60^o,AC=a\sqrt{3}.\)Tính theo a độ dài cạnh hình thoi
Cho hình thoi ABCD có diện tích là 216 và chu vi là 60 cm. Đoạn thẳng MN chia hình thoi thành hai hình bình hành AMND và MBCN (như hình vẽ)
Biết độ dài cạnh MB hơn độ dài cạnh AM là 5 cm. Tính:
a) Chu vi hình bình hành MBCN
b) Diện tích hình bình hành AMND
Cạnh hình thoi ABCD là : 60 : 4 = 15 (cm)
Hiệu độ dài MB và AM là 5 cm
Độ dài cạnh MB là: (15 + 5 ) : 2 = 10 (cm)
Độ dài cạnh AM là: 15 - 10 = 5 (cm)
a) Hình bình hành MBCN có: MB = NC = 10 cm; MN = BC = 15 cm
Chu vi hình MBCN là: 10 + 15 + 10 + 15 = 50 (cm)
b) Chiều cao hình thoi ABCD là: 216 : 15 = 14,4 (cm)
Chiều cao hình bình hành AMND bằng chiều cao hình thoi ABCD ; có đáy là AM
Diện tích hình bình hành AMND là: 14,4 x 5 = 72 (cm2)
A)Hiệu độ dài MB và AM là 5 cm
Độ dài cạnh AM là: 15 - 10 = 5 cm
Chu vi hình MBCN là: MB + BC + CN + NM = 10 + 15 + 10 + 15 = 50 cm
B)Chiều cao hình bình hành AMND bằng chiều cao hình thoi ABCD ; có đáy là AM.
bạn tự vẽ hình nha ( mình nản vẽ hình lắm )
ta có AB = 6 cm
lại có góc ABC = 60 độ
suy ra : △ABC là △ đều ( △cân có một góc bằng 60 độ )
suy ra AC bằng 6 cm suy ra AO = CO = 3 cm
xét △ABO vuông tại O có :
theo định lý py-ta-go ta có AB2 = BO2+ AO2
=> BO2 = 36 - 9 = 25 (cm)
=> BO = 5 cm
=> BD = 10 cm
vậy diện tích hình thoi là:
1/2.6.10 = 30cm2 ( điều cần tìm )
Cho hình thoi ABCD có \(\widehat{BAD}=30^o,AB=6.2cm\). Tính diện tích hình thoi.
cho hình thoi ABCD có diện tích bằng \(2\sqrt{3}\), góc A bằng 60 độ, tính AB
Cho hình chóp SABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = SD GỌI O LÀ tâm của hình thoi và SO =a√3/4 góc ABC bằng 60 độ a. Tính diện tích đáy ABCD b.tính thể tích hình chóp SABCD
a: Xét ΔBAC có BA=BC và góc ABC=60 độ
nên ΔABC đều
=>\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)
=>\(S_{ABCD}=\dfrac{a^2\sqrt{3}}{2}\)
cho hình thoi ABCD có góc A=60 độ, gọi P là trung điểm của AB, N là giao điểm của đường thẳng AD và CD. CMR:
a) diện tích hình thoi = 4diện tích tam giác PBC
b) gọi N là giao điểm của BN và DP. CM: PA.PB=PD.PM