Rút g
ọn (x - y + z)^2 + (z - y)^2 + (x - y + z)(2y -2z)
Rút gọn biểu thức:
A= (x^2-y)(y+1)+x^2y^2-1/(x^2+y)(y+1)+x^2y^2+1
B= x^2(y-z)+y^2(z-x)+z^2(x-y)/x^2y-x^2z+y^2z-y^3
đã tắt máy chưa để cho mình giải nha
Rút gọn biểu thức:
A= (x^2-y)(y+1)+x^2y^2-1
(x^2+y)(Y+1)+x^2y^2+1
B =x^2(y-z)+y^2(z-x)+z^2(x-y)
x^2y-x^2z+y^2z-y^3
\(B=\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)
\(=\frac{x^2y-x^2z+zy^2-xy^2+z^2x-z^2y}{x^2\left(y-z\right)-y^2\left(y-z\right)}\)
\(=\frac{\left(x^2y-z^2y\right)-\left(xy^2-zy^2\right)-\left(x^2z-z^2x\right)}{\left(x^2-y^2\right)\left(y-z\right)}\)
\(=\frac{\left[y\left(x+z\right)-y^2-xz\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left(xy+zy-y^2-xz\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left[\left(xy-y^2\right)-\left(xz-zy\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left[y\left(x-y\right)-z\left(x-y\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{x-z}{x+y}\)
\(A=\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)
\(=\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}\)
\(=\frac{\left(x^2y+x^2\right)+\left(x^2y^2-y^2\right)-\left(y+1\right)}{\left(x^2y+x^2\right)+\left(x^2y^2+y^2\right)+\left(y+1\right)}\)
\(=\frac{x^2\left(y+1\right)+y^2\left(x^2-1\right)-\left(y+1\right)}{x^2\left(y+1\right)+y^2\left(x^2+1\right)+\left(y+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(y+1\right)+y^2\left(x^2-1\right)}{\left(x^2+1\right)\left(y+1\right)+y^2\left(x^2+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(y^2+y+1\right)}{\left(x^2+1\right)\left(y^2+y+1\right)}\)
\(=\frac{x^2-1}{x^2+1}\)
rút gọn biểu thức
A= (x^2-y)(y+1)+x^2y^2-1
(x^2+y)(Y+1)+x^2y^2+1
B =(y-z)+y^2(z-x)+z^2
x^2y-x^2z+y^2z-y^3
rút gọn biểu thức (x-2y-z)+(-2x+y-z)-(-x-y-2z)
được nghỉ thêm 2 tuần vẫn có bài
\(\left(x-2y-z\right)+\left(-2x+y-z\right)-\)\(\left(-x-y-2z\right)\)
\(=x-2y-z-2x+y-z+x+y+2z\)
\(=0\)
Rút gọn phân thức:
\(a,\dfrac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)
\(b,\dfrac{x^5+x+1}{x^3+x^2+x}\)
a, Xét tử thức \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left[\left(x-z\right)-\left(y-z\right)\right]\)
\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-z\right)-z^2\left(y-z\right)\)
\(=\left(x^2-z^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(x+z\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(xy-xz+yz-z^2-y^2-yz+yz+z^2\right)\)
\(=\left(x-z\right)\left(xy-xz+yz-y^2\right)=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)
Mẫu thức \(x^2y-x^2z+y^2z-y^3=x^2\left(y-z\right)-y^2\left(y-z\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\)
Vậy \(\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}=\frac{x-z}{x+y}\)
b, \(\frac{x^5+x+1}{x^3+x^2+x}=\frac{x^5-x^2+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}=\frac{x^3-x^2+1}{x}\)
Rút gọn phân thức
B= \(\dfrac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)
\(B=\dfrac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)
\(\Rightarrow B=\dfrac{x^2\left(y-z\right)-y^2\left[\left(y-z\right)+\left(x-y\right)\right]+z^2\left(x-y\right)}{x^2\left(y-z\right)-y^2\left(y-z\right)}\)
\(\Rightarrow B=\dfrac{\left(y-z\right)\left(x^2-y^2\right)-\left(x-y\right)\left(y^2-z^2\right)}{\left(y-z\right)\left(x^2-y^2\right)}\)
\(\Rightarrow B=\dfrac{\left(y-z\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)\left(y+z\right)\left(y-z\right)}{\left(y-z\right)\left(x-y\right)\left(x+y\right)}\)
\(\Rightarrow B=\dfrac{\left(y-z\right)\left(x-y\right)\left(x+y-y-z\right)}{\left(y-z\right)\left(x-y\right)\left(x+y\right)}\)
\(\Rightarrow B=\dfrac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(y-z\right)\left(x-y\right)\left(x+y\right)}\)
\(\Rightarrow B=\dfrac{x-z}{x+y}\)
Rút gọn (xy+2x+1)/(xy+x+y+1)+(yz+2y+1)/(yz+y+z+1)+(zx+2z+1)/(zx+x+z+1)
Tìm x, y,z : x/2y+2z+1=y/2x+2z+1=z/2x+2y-2=2. (x+y+z)
\(\frac{2}{x+y+z}=\frac{x}{2y+2z+1}=\frac{y}{2x+2z+1}=\frac{z}{2x+2y-2}=\frac{x+y+z}{4\left(x+y+z\right)}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}2y+2z+1=4x\\2x+2z+1=4y\\x+y+z=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{17}{6}\\z=\frac{7}{3}\end{cases}}\)
x/(2y+2z+1)=y/(2x+2z+1)=z/(2x+2y-2)=2.(x+y+z)
Tìm z,x,y
vote cho mk nhé ok