Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Như Hiếu
Xem chi tiết
nguyễn công minh
Xem chi tiết
very celever
17 tháng 8 2018 lúc 10:38

th1 n là số lẻ 

nếu n là số lẻ thì n+2017 là số chẵn nên (n+2016).(n+2017)là 1 số chẵn 

th2 n là số chẵn 

nếu n là số chẵn thì n+2016 là số chẵn nên (n+2016).(n+2017)là 1 số chẵn

Ho Thi Ly
Xem chi tiết
Lovely pig
24 tháng 7 2015 lúc 15:04

Nếu n là chẵn thì n+1 là lẻ.

Ta có: n.(n+1) là chẵn nhân lẻ nên sẽ có kết quả n.(n+1) là chẵn.

Nếu n là lẻ thì n+1 là chẵn

Ta có: n.(n+1) là lẻ nhân chẵn nên sẽ có kết quả n.(n+1) là chẵn

Vậy n . ( n + 1 ) là số chẵn với mọi số tự nhiên n

Đậu thị huyền ly
9 tháng 8 2017 lúc 8:13

xet n=2k =>n chia het cho 2

xét n=2k+1=>n+1=2k+1+1=2k+2=2(k+1) chia hết cho 2

vay n.(n+1) la so chan voi moi so tu nhien n

Hoàng hôn  ( Cool Team )
27 tháng 9 2019 lúc 21:39

Nếu n là chẵn thì n+1 là lẻ.

Ta có: n.(n+1) là chẵn nhân lẻ nên sẽ có kết quả n.(n+1) là chẵn.

Nếu n là lẻ thì n+1 là chẵn

Ta có: n.(n+1) là lẻ nhân chẵn nên sẽ có kết quả n.(n+1) là chẵn

Vậy n . ( n + 1 ) là số chẵn với mọi số tự nhiên n

Phạm Anh Khoa
Xem chi tiết
Nguyễn Thị Phương Anh
24 tháng 11 2021 lúc 20:30

Giả sử nếu n là một số lẻ ta có:

 n + 2010 là một số lẻ

 n + 2013 là một số chẵn

Mà tích của một số lẻ và một số chẵn là số chẵn

=> Với n là một số lẻ thì thỏa mãn yêu cầu đề bài

Giả sử nếu n là một số chãn ta có:

 n + 2010 là một số chẵn

 n + 2013 là một số lẻ

Mà tích của.... ( viết như trên)

=> Với n là một số chẵn cũng thỏa mãn yêu cầu đề bài

Vậy (n+2010)(n+2013) là một số chẵn với mọi số tự nhiên n 

<=> ĐPCM

_HT_

Khách vãng lai đã xóa
An Bùi
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 10 2021 lúc 10:43

\(n\left(n+5\right)\)

+ Với n chẵn:

\(\Rightarrow n⋮2\Rightarrow n\left(n+5\right)⋮2\) là số chẵn với mọi số tự nhiên n

+ Với n lẻ:

\(\Rightarrow n+5⋮2\Rightarrow n\left(n+5\right)⋮2\) là số chẵn với mọi số tự nhiên n

duyminh Nguyen
4 tháng 10 2021 lúc 16:04

chẵn x lẻ = chẵn và ngược lại lẻ x chẵn = chẵn;nếu N = chẵn thì trong ngoặc = lẻ;chẵn x lẻ = chẵn

nếu N = lẻ thì trong ngoặc bằng chẵn ; lẻ x chẵn = chẵn

tick cho mình nhé

Lâm Hoàng Hải
Xem chi tiết
Sugar Moon
Xem chi tiết
Minh Nguyễn Cao
31 tháng 10 2016 lúc 21:28

Nếu n là số chẵn thì n + 7 là số lẻ

số lẻ . số chẵn = số chẵn ((n+7).n)

nếu n là số lẻ thì n + 7 là số chẵn

số lè . số chẵn = số chẵn (n.(n+7))

Shana
31 tháng 10 2016 lúc 21:29

n= 2k :

\(n\left(n+7\right)=2k\left(2k+7\right)\) => chẵn 

n=2k+1 

\(n\left(n+7\right)=\left(2k+1\right)\left(2k+8\right)=\left(2k+1\right)2\left(k+4\right)\) => chẵn 

Vậy tích n(n+7) là số chẵn với mọi stn

Khương Hoàng Anh
Xem chi tiết
Lê Minh Quang
11 tháng 7 2023 lúc 16:21

Nếu n không chia hết cho 2 thì n có dạng 2k+1 (kϵN)

⇒ (n+4).(n+7)=(2k+1+4).(2k+1+7)=(2k+5).(2k+8)⋮2 (vì 2k+8⋮2) (1)

Nếu n chia hết cho 2 thì n có dạng 2k (kϵN)

⇒ (n+4).(n+7)=(2k+4).(2k+7)⋮2 (vì 2k+4⋮2) (2)

Từ (1) và (2)⇒ Với mọi số tự nhiên n thì tích (n+4).(n+7)⋮2 (ĐPCM)

 

Lương Thị Vân Anh
11 tháng 7 2023 lúc 16:21

Vì n là số tự nhiên nên n có dạng 2k hoặc 2k + 1 ( k ϵ N )

Nếu n = 2k

⇒ 2k + 4 = 2( k + 2 ) ⋮ 2

Suy ra ( n + 4 )( n + 7 ) ⋮ 2 hay ( n + 4 )( n + 7 ) là số chẵn

Nếu n = 2k + 1

⇒ 2k + 8 = 2( k + 4 ) ⋮ 2

Suy ra ( n + 4 )( n + 7 ) ⋮ 2 hay ( n + 4 )( n + 7 ) là số chẵn

Vậy với mọi số tự nhiên n thì ( n + 4 )( n + 7 ) là số chẵn

Nguyễn Đức Trí
11 tháng 7 2023 lúc 16:42

Để \(\left(n+4\right).\left(n+7\right)\) là số chẵn

\(\Rightarrow\left(n+4\right)\left(n+7\right)\ge2n\) \(\left(n\in N\right)\)

\(\Rightarrow n^2+11n+28-2n\ge0\)

\(\Rightarrow n^2+9n+28\ge0\) 

\(\Rightarrow n^2+9n+\dfrac{81}{4}-\dfrac{81}{4}+28\ge0\)

\(\Rightarrow\left(n-\dfrac{9}{2}\right)^2+\dfrac{31}{4}\ge0\left(1\right)\)

mà \(\left(n-\dfrac{9}{2}\right)^2+\dfrac{31}{4}>0\) \(\left(\left(n-\dfrac{9}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\right)\)

⇒ (1) luôn đúng với mọi n ϵ N

⇒ Điều phải chứng minh

 

ngôi sao tình yêu
Xem chi tiết
Nguyễn Trâm Anh
16 tháng 10 2018 lúc 12:10

Với n chẵn thì n = 2k

\(\Rightarrow16^{2k}-1=256^k-1=\left(256-1\right)\left(256^{k-1}+...\right)\)\(=255\left(256^{k-1}+...\right)=17.15.\left(256^{k-1}+...\right)\)

Chia hết cho 17

Với n lẻ thì n = 2k + 1

\(\Rightarrow16^{2k+1}-1=16\left(16^{2k}-1\right)+15\)không chia hết cho 17

Vậy 16n - 1 chia hết cho 17 khi và chỉ khi n là số chẵn