1. Cho tam giác ABC, tia phân giác của A cắt BC tại D. Trên AC lấy E sao cho AE=AB
a) CM: DE=DB
Cho tam giác ABC vuông tại A ( AB < AC ). Tia phân giác góc A cắt BC tại D. Qua D kẻ đường thẳng vuông góc vs BC tại D, cắt AC tại E. Trên AB lấy điểm F sao cho AE = AF. CM
a, Góc ABC = DEC
b, Tam giác DBF là tam giác cân
c, DB = DE
Các bạn ơi nhanh lên nhé
Cho tam giác ABC có AB < AC. Tia phân giác góc A cắt cạnh BC tại D, trên cạnh AC lấy E sao cho AE = AB.
a) So sánh DB và DE.
b) Chứng minh AC - AB > DC - DB.
cho tam giác ABC có AB<AC.Tia phân giác góc A cắt BC tại D.Trên AC lấy điểm E,sao cho AE=AB
a,CM DB=DE
b,CM AD vuông BE
c,Trên tia đối tia DA lấy điểm M. CM:tg BDM=tg EDM
a,Xét △AED và △ABD có
AE = AB (theo giả thiết)
EAD=BAD (theo giả thiết)
AD là cạnh chung
⇒△AED = △ABD (c.g.c)
⇒DE = DB (hai cạnh tương ứng)
b, gọi o là giao điểm của AD và BE
Xét △AEO và △ABO có
AE = AB (theo giả thiết)
EAO=BAO (theo giả thiết)
AO là cạnh chung
⇒△AEO = △ABO (c.g.c)
⇒AOE = AOB (hai góc tương ứng)
ta có : AOE + AOB = 180 độ (hai góc kề bù)
mà AOE = AOB
⇒AOE = AOB = 180 : 2 = 90
⇒ AO \(\perp\) EB hay AD \(\perp\) EB
c, vì AE = AB ⇒ △AEB cân tại A
⇒AEO = ABO
ta có : AEM = AEO + MEO
⇒MEO = AEM - AEO
ABM = ABO + MB
⇒MBO = ABM - ABO
mà AEO = ABO
⇒MEO = MBO
⇒△MEB cân tại M ⇒ME = MB
Xét △MEO và △MBO có
ME = MB (chứng minh trên)
MOE = MOB = 90 độ
MO là cạnh chung
⇒△MEO = △MBO (cạnh huyền - cạnh góc vuông)
⇒EMO = BMO (hai góc tương ứng)
Xét △BDM và △EDM có
ME = MB (chứng minh trên)
EMO = BMO (chứng minh trên)
MD là cạnh chung
⇒△BDM = △EDM (c.g.c)
mình trình bày rất mất thời gian nên nếu đúng thì tick mình nha
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc A cắt BC tại D qua D kẻ đường thẳng vuông góc với BC cắt AC tại E trên AB lấy điểm F sao cho AF=AE chứng minh:
a) Góc B= góc DEC
b) Tam giác DBE là tam giác cân
c)Chứng minh DB=DE
cho tam giác ABC vuông tại A ( AC <AB), tia phân giác góc C cắt AB tại D. Trên tia đối của tia DC lấy điểm E sao cho CD =DE, từ điểm E vẽ đường thẳng vuông góc với AB và cắt BC tại N.
a, CM : tam giác ACD = tam giác MED
b, CM: NC =NE
c, CMR: DM <DB
Cho tam giác ABC ( AB < AC ), phân giác góc A cắt cạnh BC tại D, trên cạnh AC lấy điểm E sao cho AE = AB
a, CM tam giác ADB = ADE và AE > DE
b, CM DC > DB
c, CM AE = AB + AC /2
Cho tam giác ABC . Tia phân giác của góc A cắt BC tại D . Trên AC lấy E sao cho AE=AB
- Chứng minh DE=DB
- Chứng minh Tam giác ADB=ADC
b xét tam giac adb va tam giac adc co
ab=ac(tam giac abc can)
bad=cad (gt)
goc b=goc c (tam giac abc can )
suy ra tam giav abd =tam giac acd (g c g)
Cho △ ABC ⊥ tại A (AB<AC) tia phân giác của ∠A cắt BC tại D. Qua D kẻ đường ⊥ với BC cắt AC ở E . trên AB lấy điểm F sao cho AF=AE
CMR:a) ∠B=∠DEC
b)△ DBF là tam giác cân
c)DB=DE
tự vẽ hình
a, Xét △ABC vuông tại A có: ∠B + ∠C = 90o (tổng 2 góc nhọn trong tam giác vuông) (1)
Xét △DEC vuông tại D có: ∠C + ∠DEC = 90o (tổng 2 góc nhọn trong tam giác vuông) (2)
Từ (1) và (2) => ∠B = ∠DEC
b, Xét △EAD và △FAD
Có: EA = FA (gt)
∠EAD = ∠FAD (gt)
AD là cạnh chung
=> △EAD = △FAD (c.g.c)
=> ∠AED = ∠AFD (2 góc tương ứng) (3)
Ta có: ∠AED + ∠DEC = 180o (2 góc kề bù) (4)
∠AFD + ∠DFB = 180o (2 góc kề bù) (5)
Từ (3), (4) và (5)
=> ∠DEC = ∠DFB
Mà ∠DEC = ∠B (cmt)
=> ∠DFB = ∠B
Xét △DFB có: ∠DFB = ∠B
=> △DFB cân tại D
c, Vì △DFB cân tại D (cmt)
=> DF = DB (2 cạnh tương ứng)
Mà DF = ED (△EAD = △FAD)
=> DB = DE (ddpcm)
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc B cắt AC tại E. Trên cạnh BC lấy điểm D sao cho DB = AB. Hai đường thẳng AB và DE cắt nhau tại I. Chứng minh:
a) AE= DE
b) ∆AEI = ∆DEC
c) BE ⊥ CI
d) AC > 2DE
giúp mk với
a: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>AE=DE
b: Xét ΔEAI vuông tại A và ΔEDC vuông tại D có
EA=ED
góc AEI=góc DEC
=>ΔEAI=ΔEDC
c: BI=BC
EI=EC
=>BE là trung trực của CI
=>BE vuông góc CI