Cho xy khac 0 va x+y=1
Chung minh rang : x/y^3-1+y/x^3-1-2(xy-2)/(xy)^2+3=0
Cho x, y > 0 va x + y <= 1 . Chung minh rang :\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\)
Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)
Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)
Ta có : \(x+y\le1\)
=> \(\left(x+y\right)^2\le1\)
=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )
=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )
=> đpcm
Đẳng thức xảy ra <=> x = y = 1/2
cho x+y=1 va xy khac 0 cmr x/y^3-y/x^3=-2(x-y)/x^2×y^2+3
Chung minh bieu thuc Q=(x^4*y^n+1-1/2*x^3*y^n+2):1/2x^3*y^n-20x^4*y:5*xy^2 (n thuoc N) luon <0 voi moi gia tri x khac 0,y khac 0
cho x+y=1 va xy khac 0 cmr x/(y3-1)-y/(x3-1)+2(x-y)/(x2y2+3)=0
Cho A=x2y,B=xy2,C=xy biet x+y=-1 chung minh rang A+B+C=0
Ta có:
\(A+B+C=x^2y+xy^2+xy\)
\(=xy.\left(x+y+1\right)\)
mà theo bài ra \(x+y=-1\) nên
\(A+B+C=xy.\left(-1+1\right)=xy.0=0\)
Vậy \(A+B+C=0\) (đpcm)
Chúc bạn học tốt!!!
Ta có: \(A+B+C=x^2y+xy^2+xy\)
\(=xy\left(x+y+1\right)=xy\left(-1+1\right)=0\)
\(\Rightarrowđpcm\)
cho a=x 3y, b=x 2y 2, c=xy 3 .Chung minh rang voi moi so huu ti x va y ta luon duoc ax+b 2-2x 4y 4=0
giai hpt y^2(x^2-3)+xy+1=0 va y^2(3x^2-6)+xy+2=0
cho xy khác 0 và x+y =1
chứng minh rằng: \(\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
Xét \(\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{1-y}{y^3-1}+\frac{1-x}{x^3-1}=-\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}\)
\(=-\frac{x^2+y^2+x+y+2}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=-\frac{x^2+y^2+3}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1}\)
\(=-\frac{\left(x+y\right)^2-2xy+3}{x^2y^2+x^2+y^2+2xy+2}=-\frac{4-2xy}{x^2y^2+3}=\frac{2\left(xy-2\right)}{x^2y^2+3}\)
từ đó ta có đpcm
Cho A = \(\dfrac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}.\left[1:\dfrac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3-y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
B = x - y
Chứng minh đẳng thức A = B
Tính giá trị của A, B tại x = 0; y = 0 và giải thích vì sao A ≠ B
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)