cho \(3x+5y⋮7\left(x,y\in N\right)\)
\(CMR:10a+b⋮7\) và ngược lại
cho \(3x+5y⋮7\left(x,y\in N\right)\)
\(CMR:x+4y⋮7\) và ngược lại.
Lời giải:
Ta có:
\(3x+5y\vdots 7\)
\(\Leftrightarrow 4(3x+5y)\vdots 7\)
\(\Leftrightarrow 12x+20y\vdots 7\)
\(\Leftrightarrow 7x+5(x+4y)\vdots 7\)
\(\Leftrightarrow 5(x+4y)\vdots 7\)
\(\Leftrightarrow x+4y\vdots 7\) (do \(5\) không chia hết cho $7$ )
Do đó ta có đpcm.
Nhớ rằng dấu "\(\Leftrightarrow \)" tương ứng với phép chứng minh cả hai chiều.
Ta có 3x+5y\(⋮\)7
\(\Rightarrow\)4(3x+5y)\(⋮\)7
\(\Rightarrow\)12x+20y\(⋮\)7
\(\Rightarrow\)7x+5(x+4y)\(⋮\)7
\(\Leftrightarrow\)5(x+4y)\(⋮7\)
\(\Leftrightarrow\)x+4y\(⋮\)7
\(\Rightarrow\)dpcm
CMR: Nếu 3x + 5y chia hết cho 7 thi x + 4y chia hết cho 7 và ngược lại (x;y thuộc N)
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Cho \(a+5b⋮7\left(a,b\in\right)N.\)
\(CMR:\) \(10a+b⋮7,\)điều ngược lại có đúng ko?
cm 10a + b chia hết cho 7
ta có : a+5b chia hết cho 7 => 10(a+5b) chia hết cho 7=> 10a+50b chia hết cho 7)(1)
xét hiệu: 10a+50b-(10a+b)=49b chia hết cho 7 (2)
từ (1);(2) =>10a+b chia hết cho 7
cm a+5b chia hết cho 7
ta có 10a+b chia hết cho 7=> 5(10a+b) chia hết cho 7 => 50a+5b chia hết cho 7 (1)
xét hiệu: 50a+5b-(a+5b)=49a chia hết cho 7 (2)
từ (1);(2)=>a+5b chia hết cho 7
nhớ tích đúng cho mình nhé ahihi
CMR: \(3x+5y\) chia hết cho 7 thì x+4y chia hết cho 7 (x,y \(\in\) N) và ngược lại .
Cho 3x +5y chia hết cho 7. CMR x+4y chia hết cho 7 (x,y thuộc N) đếm ngược lại có đúng khôg?
nếu 3x + 5y chia hết cho bảy thì x,y thuộc ny
3x +5y chia hết cho 7
3x + 5y + 7y chia hết cho 7
3x + 12y chia hết cho 7
3(x + 4y) chia hết cho 7
(3 , 7) = 1
Vậy x + 4y chia hết cho 7
Bài 1 Cho biết 3a+2bchi hết cho 17 ( a,b thuộc N ) . Chứng minh rằng 10a + b chia hết cho 17
Bài 2 Cho biết a - 5b chia hết cho 17 ( a,b thuộc N) Chứng minh rằng 10a + b chia hết cho 17
Bài 3 a) Chứng minh rằng Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N). Điều ngược lại có đúng ko?
b)Chứng minh rằng 2x + 3ychia hết cho 17 thì 9x + 5y chia hết cho 17 (x,y thuộc N). Điều ngược lại có đúng ko?
a) Chứng minh rằng : Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 (x, y ∈N).
Điều ngược lại có đúng không?
b) Chứng minh rằng : Nếu 2x + 3y chia hết cho 17 thì 9x + 5y chia hết cho 17 (x, y thuoc N). Điều ngược lại có đúng không ?
Mấy câu này khá giống nhau làm cho câu mẫu rồi câu sau tự làm nha em =))
a) 3x + 5y ⋮ 7
=> 5.(3x + 5y) ⋮ 7
<=> 15x + 25y ⋮ 7 (1)
Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)
Lấy (1) trừ (2), ta có:
(15x + 25y) - (14x + 21y) ⋮ 7
<=> x + 4y ⋮ 7
Điều ngược lại đương nhiên là đúng =)))
Chúc em học tốt !!!
Bài đâu thế , quen lắm nhưng nhớ không ra