Tìm a,b biết \(x^3+ax+b\) chia x+1 dư 7, chia x-3 dư -5
1. tìm các hằng số a và b sao cho x^3 + ax + b chia hết cho x+1 thì dư 7 chia cho x-3 dư -5.
2. tìm các hằng số a,b,c sao cho ax^3 + bx^2 + c chia cho x+ 2 , chia cho x^2 - 1 thì dư x+5
Tìm các số a và b. Biết:
x3 + ax + b chia cho x + 1 thì dư 7 và chia cho x - 3 thì dư -5
bài này chỉ giải được cách nâng cao thôi để mình trình bày cho bạn xem thử
theo gt tao có \(x^3+ax+b=\left(x+1\right)A_{\left(X\right)}+7=\left(X-3\right)B_{\left(X\right)}-5\)
Theo định lý bezout
tao có \(F_{\left(-1\right)}=7\) (1)
Tương tự \(f_{\left(3\right)}=-5\) (2)
để chia \(f_{\left(x\right)}=\left(x+1\right)\left(x-3\right)c_x+ax+b\)
kết hợp với (1) tao có \(f_{\left(-1\right)}=-a+b=7\)
kết hợp với (2) tao có \(f_{\left(3\right)}=3a+b=-5\)
lấy hai vế trừ cho nhau \(-4a=12=>a=-3\)
\(=>b=4\) vậy dư của phép chia là -3x+4
để mình giải thích chỗ ax+b phần này cũng hơi khó hiểu 1 chút
nếu như ta lấy (x+1)(x-3) thì bậc cao nhất của đa thức này là bậc 2 mà theo như sgk đa thức chia chia cho đa thức bị chia thì dư của phép chia đó phải bé hơn bậc của đa thức bị chia
còn chỗ ax+b các chữ a,b mà mình giải bạn đừng nghĩ là các chữ cái này là các chữ cái cho ở giả thuyết chẳng qua là mình viết quen tay thôi còn phần bezout thì đây là một chuyên đề nâng cao nếu bạn là hsg thì cũng sẽ bồi dưỡng thôi
Cho f(x)= x3+ax+b
Biết f(x) chia x+1 dư 7
f(x) chia x-3 dư -5
Tìm a,b
Ta có:
f(x) chia x+1 dư 7
=> f(-1) =7
<=> -1-a-b = 7
<=>-a-b=8
f(x) chia x-3 dư -5
=> f(3) = -5
<=> 27+3a+b = -5
<=> 3a+b = -32
=>\(\left\{\begin{matrix}-a-b=8\\3a+b=-32\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}2a=-24\\-a-b=8\end{matrix}\right.\Leftrightarrow}\left\{\begin{matrix}a=-12\\b=4\end{matrix}\right.\)Vậy a=-12; b=4
2. Tìm n thuộc Z để
a, 2n^2 -n-7 chia hết cho n-2
b, 25n^2 - 97n +11 chia hết cho n-4
1.Tìm a,b biết x^3 + ax +b chia x+1 dư 7; chia cho x-3 dư -5
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).Số dư của phép chia này là 7 nên ta có:\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
Từ (1) và (2) ta có:\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.Viết kết quả các phép chia này ta được:\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
tìm các số thực a,b biết: f(x)=x^3+3x^2+ax+b chia x-1 dư 5 chia x-2 dư 23
Theo định lý Bezout, ta có:
f(x) chia x - 1 dư 5
--> f(1) = 5 --> 4 + a + b = 5
<=> a + b = 1 <=> b = 1 - a
f(x) chia x - 2 dư 23
--> f(2) = 23 --> 20 + 2a + b = 23
--> 2a + b = 3
<=> 2a + 1 - a = 3 <=> a = 2
--> b = -1
Tìm các hằng số a, b sao cho ax3+ax+b chia cho x+1 dư 7 và chia cho x-3 dư -5
Tìm các hằng số a và b sao cho x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư - 5.
Tìm các hằng số a và b sao cho x3+ax+b chia hết x+1 dư 7, chia cho x-3 dư -5
Tìm a và b sao cho đa thức x^3 + ax + b chia hết cho x+ 1 dư 7 và chia hết cho x - 3 dư -5